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SUMMARY

A method is presented for calculating the properties of com-
pressible laminar boundary layers with heat transfer and arbitrary pressure
gradients. The method is based on the concept of combining integral relat-
ions and similarity solutions. It differs, however, from the classical
technique in that both the momentum and the energy integral equations are
used.

The method is applied to calculate the self-induced pressure
interaction problem in hypersonic flows. The solutions cover the complete
range of interaction and show good agreement with other more exact theore-
tical results as well as experimental data.

The pressure interaction problem is also considered for
real gases using weakly dissociated boundary layers. Calculations are
presented for a flat plate with a fully catalytic surface in a stream of oxy-
gen. The results show that under these conditions the boundary layer
characteristics vary only slightly from the perfect gas case.
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NOTATION
coefficient of polynomial velocity profile (Eq. 5.41a)
value of L at m = 0 (A.7)
value of L, at m = 0 (2. 29)
coefficient of polynomial partial enthalpy profile (5. 41b)
slope of linearized L o m relation (A.7)
slope of linearized L.~ m relation (2. 29)
Heg (2.3
coefficient of polynomial atom mass fraction profile (5. 41c)

constant in linear viscosity - temperature relation

b = Tb
-;% c (3.6)

atom mass fraction (5. 4)

atom mass fraction at external stream (5. 5)
atom mass fraction at equilibrium (5. 25)
specific heat at constant pressure

skin friction coefficient (3.7)

heat transfer coefficient (3. 9)

binary diffusion coefficient (5. 3)

dimensionless stream function variable defining velocity
boundary layer (2. 8)

transverse curvature p:ggameter (2.38)

dimensionless total en’thalpy, H/He (2.8)

specific enthalpy (per unit mass)

specific dissociation energy of atomic products (5. 12a)

specific total enthalpy
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specific partial enthalpy (5. 15)
boundary layer form factor 4/0 (2.22)
integral defined (5. 59a)

integer specifying number of dimensions (2. 1)
(j = 0 two-dimensional case, j = 1 axisymmetric case)

thermal conductivity

dissociation rate constant (5. 21)
recombination rate constant (5. 21)
hypersonic similarity parameter (4. 10)

equilibrium constant based on mass concentration
K¢ = kd/kr (5. 25)

equilibrium constant based on partial pressure (5. 27)
skin friction correlation parameter (2. 25)
Lewis-Semenov number (5. 3)

correlation parameter (A. 6)

correlation parameter (2. 28)

velocity gradient parameter defined in (A. 1)
velocity gradient parameter (2. 24)

mass of atom (5. 23)

local Mach number

ratio _f%l;;_h (2. 11)

exponent in pressure relation p « x2
pressure ratio pe/pg (2.34)

pressure

Prandtl number

heat transfer rate to body (3. 9)
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ratio of enthalpy defect thickness to momentum thickness
A8 (2.23)

distance from axis in axisymmetric problems (2. 1)
heat transfer correlation parameter (2. 26)
universal gas constant

gas constant per unit mass

Reynolds number

absolute temperature

characteristic chemical reaction time (5. 30)
velocity component in x direction (2. 1)

velocity component in y direction (2. 1)

mass production rate in dissociating flow (5. 4)
boundary layer coordinate, distance along the surface (2.1)

boundary layer coordinate, distance normal to the surface
(2.1)

atom mass fraction ratio —Ct.—:j— (5.11)

exponent in the integral equation for m (A. 13)
exponent in the integral equation for m (2. 34)
exponent in the integral equation for m (A. 13)
exponent in the integral equation for m (2. 33)

specific heat ratio —‘C:L
"

parameter governing transverse curvature in axisymmetric
problem (2. 12)

transformed boundary layer thickness (5. 41b)
boundary layer displacement thickness (3. 4)

dimensionless displacement thickness (4. 6)
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Subscripts
A

b

C

transformed displacement thickness (2. 14a)
thickness defined in (5. 20)

dimensionless ¥ coordinate, ’% (5.41a)
transformed y coordinate (2. 7a)

local angle of flow inclination (2. 12)
transformed momentum thickness (2. 14b)
parameter for temperature field (p. 11 )
parameter for velocity field (p. 11)

pressure distribution parameter (C.5)
transformed enthalpy defect thickness (2. 14c)
modified enthalpy defect thickness (2. 18)
viscosity coefficient

transformed x coordinate (2. 7a)

density

characteristic ratio of flow time to reaction time (5. 30)
shear stress on wall (3.7)

hypersonic viscous interaction parameter (4. 5)

exponent for viscosity o< temperature relation /M°< T

atom

conditions at body surface

conditions at cone surface in an inviscid flow
conditions at the outer edge of the boundary layer
reference conditions

stagnation condition

free stream condition
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1. INTRODUCTION

The development of boundary layer theory has continued
since it was first introduced by Prandtl in 1904. The theory allows one to
obtain approximate solutions to the Navier-Stokes equations for the viscous
flow around moving bodies. The flow field around a body is divided into
two parts. In the external part, the effect of the viscosity of the fluid is
neglected and the Navier-Stokes equations reduce to the Euler equations.
In the inner part of the flow field, which is called the boundary layer, vis-
cosity has a strong influence; but certain terms in the Navier-Stokes equa-~
tions can be neglected to give the boundary layer equations. At high Rey-
nolds numbers the boundary layer is very thin and the displacement of the
external flow is negligible. This enables one to solve for the external flow
field over the body by means of the Euler equations. These solutions are
then used as external boundary conditions for the boundary layer equations.
The boundary layer equations are still complex; they are a set of nonlinear
partial differential equations.

In practical engineering applications, boundary layer theory
provides a method for predicting with accuracy the shear stress and the
heat transfer at the surface of bodies moving in fluids. It also provides an
explanation of the mechanism of flow separation. Because of its useful-
ness in practice and its mathematical complexity, boundary layer theory
is still one of the most interesting subjects in the field of fluid mechanics.

Thorough discussions of boundary layer theory are given in
many standard works (for instance, Refs. 5 to 9). Due to the great mathe-
matical difficulties encountered in solving the boundary layer equations,
especially when the effects of compressibility, pressure gradients, and
heat transfer are included, only very few precise numerical solutions have
been obtained. Under certain conditions, such as specific types of free-
stream pressure or surface temperature distributions, the boundary layer
equations can be reduced to a system of ordinary differential equations by
means of a similarity transformation. These are called similar solutions.

Because of the difficulties in obtaining exact solutions for
general conditions and because similar solutions are restricted to certain
specific types of conditions, approximate methods have been developed. A
class of such methods is based on von Karman's momentum integral. These
integral methods make certain assumptions as to the form of the unknown
functions, which reduces the problem to solution of a set of ordinary
differential equations. Pohlhausen developed a method for incompressible
flow by assuming a quartic velocity profile. By satisfying suitable boundary
conditions at the wall, the velocity profile is reduced to a function of one
independent parameter. The x dependency of this parameter is then deter-
mined by solving the von Karman momentum integral equation .

This method can also be extended to the compressible
boundary layer. In this case, the energy equation is also introduced in the
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integral form. Similarly, a simple polynomial profile of the total enthalpy
is assumed. Each of the boundary layer profiles are then reduced to a
function of one independent parameter by satisfying the boundary conditions.
These parameters are then determined by the simultaneous solutions of

the two integral equations.

The concept of the combination of the integral method and similar
solutions was first introduced by Thwaites (Ref. 1) for the case of incom-
pressible flow with an arbitrary pressure gradient. His approach was to
obtain a functional relationship between the shear stress at the wall, the
local pressure gradient and the ratio of displacement thickness to momen-
tum thickness. Instead of assuming a type of profile for the unknown funct-
ions, this relationship was obtained from the known incompressible similar
solutions.

Rott and Crabtree (Ref. 2) have extended this concept to the
case of compressible flow over an insulated body, and Cohen and Reshotko
(Ref. 3) to the case of bodies with heat transfer. These two works are
essentially applications of the classical momentum-integral technique. In
the case of bodies with heat transfer, the consequence of this approach is
that the momentum-integral equation and energy-integral equation cannot
be satisfied simultaneously, and the energy equation is usually ignored.
The heat transfer is obtained from the similar solutions through the correla-
tion parameter which is determined from the momentum integral equation
alone. The energy integral equation could also be used, however, the two
answers disagree in general. With the energy integral equation ignored, in
certain circumstances, the method may give the velocity field accurately
while predicting the temperature field with only low accuracy.

In order to improve the accuracy of the computation of heat
transfer, the energy integral equation must also be considered in the formu-
lation of the integral relations. The first portion of this paper is concern-
ed with developing such a method. The present approach is still based on
the simple one-parameter correlation concept. However, the energy in-
tegral equation is considered simultaneously with the momentum integral
equation such that the variation of the ratio of the energy defect thickness
to momentum defect thickness, which has a strong effect on the computation
of heat transfer, is taken into account. The results show that higher
accuracy is obtained in predicting heat transfer from the leading edge to
the separation point. However, the skin friction coefficient is predicted
with greater accuracy towards the leading edge but the values are poorer
near the separation point than that obtained from the momentum integral
alone.

The present method is then applied to calculate the self-
induced pressure interaction problem in hypersonic flows. The pressure
interaction between the viscous boundary layer and the inviscid flow on a
body moving at hypersonic speeds results from the relatively large out-
ward streamline deflection induced by a thick boundary layer. The present
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integral method makes it possible to construct a solution which is valid
through the complete interaction range.

In high-speed boundary-layer flow, the temperature inside
the boundary layer may become very high because of the large viscous
dissipation and real gas effects can thus alter the properties of the flow.
The effects of a weakly dissociating diatomic gas like oxygen are examined
for the pressure-interaction problem on a fully catalytic flat plate. It is
found that under these conditions the boundary layer properties depart only
slightly from that of a perfect gas.

2. INTEGRAL METHOD FOR TWO-DIMENSIONAL AND AXISYMMETRIC
LAMINAR BOUNDARY LAYERS IN COMPRESSIBLE FLOWS

2.1 Boundary Layer Equations

Consider the steady flow of a perfect gas over an unyawed
body, using the coordinate system (x,y) where x is measured along the
body surface from the nose or leading edge and y is measured along the out-
ward normal from the body surface. Making the usual assumption that the
boundary layer thickness is small compared to the longitudinal body radius
of curvature and that the centrifugal forces are negligible, the equations of
the steady, compressible laminar boundary layer for a perfect gas are

Continuity:
dpur’ Jpurl
dX + > Y = o (2. 1)

X - Momentum:

oY
U4 R
Pax*fW%%— J2u (2.2)

)
B
l_

Yy - Momentum:

s (2.3)

23
Energy
F“éﬁ’*'t"’% _ _LQ_(%Y\A?_E.) + _1__3_[ (,__L),;_é_w‘)] (2. 4)
x >y = v ay Iy ri 2Y f‘ Br ry Zz

where u and v denote the velocity components in the x and y directions,
respectively and H is the total enthalpy,

H = h + 3 u?
j = 0 is for two-dimensional flow and j = 1 for axisymmetric flow. The

distance r = r (x, y) is the cylindrical radius from the axis of symmetry
to any point in the boundary layer.



The gas is assumed to be thermally perfect. The equation of
state is given by

‘%WT (2.5)

Equations (2. 1) to (2. 5) constitute the system of equations for steady,
laminar-boundary-layer flow of a perfect gas over an unyawed body. These
equations are similar to those appearing in Ref. 5, except that in the latter
the radius r is approximated by rp, the radius from the axis of symmetry
to the body surface. The present equations contain transverse curvature
terms specified by r for axisymmetric flows. (Refs. 25, 29.)

The boundary condition on the velocity at the wall follows
from the requirement of no slip, and the temperature may satisfy the con-
dition that there is no heat transfer at the wall, or the surface temperature
may be specified. The low Reynolds number effects such as velocity slip
and temperature jump on the surface are not considered. Hence aty =0,
without suction or blowing from the surface,

=U=o0
and (2. 6a)
either % = o
or T = Te(x)

At the outer edge of the boundary layer, the values of u and T are specified
by the inviscid flow solution. Hence aty =

U = Ue
T=Te (2. 6b)
or H = He

2.2 Transformation

The transformation of coordinates which we introduce is the
generalized form of the usual Lees-Levy-Dorodnitsyn transformation. The
transformation can be written (Ref. 5, 25)

X
= Ue 1 d
~'f()() Jo \DLIUL e x (2. 7a)

N 0y) = —‘—‘LJ” £ ay
127 ),

from which

AL o pven” (2. Tb)

> puer?
39 © Jzz




We further define the following dimensionless quantities as dependent
variables

. >t
Pl -4

(2. 8)
- H
9= He

Applying the coordinate transformation (2. 7) and the non-
dimensional quantities (2. 8), and assuming that the Prandtl number is con-
stant, the momentum and the energy equations can be transformed with the
aid of the continuity equation into the form

S(nr aqz) * ‘Cﬁ% + 2 ﬂgﬂue [%“(%f?)z] (2. 9)

21’-3 a
=2§<§£ aaqag B gfgiﬁ{)

HEER - w5l eDEE] e
_ >F 39 _ ot 29
= 23 (Sr5e 7 3% )
where
N S (2.11)
Co s

r2 2 coso, 2 4
M= = 1+ =225 gj—%dq (2.12)

fe e 2

The function [° which appears in the axisymmetric case governs the
effect of transverse curvature and 0 is the local slope of the body.

The boundary conditions are reduced to
‘@( o)=0

'9.1(0)'-‘0; (2. 13a)
either g(o) = 9»(2)'

or Gn(0) =0



and ‘Fq—*’
9 —

The subscript v indicates partial differentiation with respect to n

at n —oeo (2. 13b)

Equations (2. 9) to (2. 12) are the fundamental equations for
a compressible laminar boundary layer to be solved under the boundary
conditions (2. 13). They are in general nonlinear partial differential equa-
tions. Under certain mathematical restrictions, these equations can be
reduced to ordinary differential equations. The solutions of the latter which
show similitude under these restrictions are called similar solutions (Ref.
5). Similar solutions have been obtained for two-dimensional flows (for
example, Ref. 10 and 14) and for axisymmetric flows (Ref. 25).

2.3 Integral Equations

We now formulate our approximation method using integral
relations, following the classical concept of the von Karman momentum
integral. If we integrate the transformed equations of momentum and
energy (2. 9) and (2. 10), with respect to  through the boundary layer,
and introduce the following integrals, namely the dimensionless displace-
ment, momentum, and enthalpy-defect thicknesses respectively,

A=L-<9-v°q)dq (2. 14a)

e = [o fy (=) dn (2. 14b)

N = j”ﬂ('~9)dq (2. 14c)
we have

'?'qr)b-‘-@*'?Eg% + be £5 z%e(A+8) (2.15)

‘9;':?1’=/\+2§§'—’§\— (2. 16)
Here we have used the relation

%'?{=%‘;(9—1"—{) (2.17)

which holds for a perfect gas.

For constant wall temperature distribution, the energy in-
tegral equation can be written as




#_%L=7\+2§Q_& {2.18)

=9 d¥
where
Rz
Note: This is equivalent to define a new nondimensional variable for the
enthalpy
7=_H-He Hb
“He-Fb
and the energy integral equation becomes
Inp _ = dA
o= A+ 2% 4t (2. 182)
with
= f -F,)Idvz (2.19a)

The integral equations, Eqs. (2.15) and (2. 16) are exactly
the same for two-dimensional flows and axisymmetric flows. The effect of
transverse curvature for axisymmetric flows does not appear explicitly in
the equations (Ref. 25).

2.4 Methods of Solution

The momentum and the energy equations in integrated forms
are given by Egs. (2. 15) and (2. 18) with thicknesses defined by Eq. (2. 14).
These two equations can be rewritten as follows

He 2F due 2 2.20
]df(?@) @ﬁnnb’ le dg@(!-FHF) ( )
4 —2y _ A 9m (2.21)
§(§A) Pr(1-9p)

The fundamental requirement for a solution of these two
equations is a correlation for the terms on the right hand sides. If some
relation is assumed, then these equations can be integrated. In Pohl-
hausen's method (Refs. 6, 8), the assumption of the forms of the velocity
profile and the total enthalpy profile serves this purpose. By satisfying a
suitable number of boundary conditions at the wall and at the edge of the
boundary layer, each of these profiles can be reduced to a function of one
independent parameter. Therefore, the correlations of the Egs. (2.20)
and (2. 21) are now depended on two parameters, namely, X for the
velocity profile and x for the total enthalpy profile. For any correlation




quantity Q, one can obtain a functional relation Q(», K ) as illustrated in
the sketch in Fig, 1. Once these correlations are assumed, the Eqgs.

(2. 20) and (2. 21) can be solved simultaneously to yield a unique relation
of » and X . This relation is shown by the dashed line on the Q(», x )
surface in Fig. 1.

In Thwaites' method (Ref. 1), or the extension given by
Cohen and Reshotko (Ref. 3), instead of assuming types of profiles, the
functional relations from the exact similarity solutions determine the rela-
tions between A and « . Thus for a specified surface temperature, a
single curve results for the correlation Q( >, % ) as shown in Fig. 1. If
this correlation is applied to Eq. (2. 20), or Eq. (2.21), only one equation
is then required to obtain the § dependency of » or x . This is the
basic method of one-parameter correlation.

Though the one-parameter approach restricts the individual
development of the parameters X and X , however, it provides a simple
method to solve the problem with reasonably high accuracy, especially for
cases with favourable pressure gradients and cold walls (Ref. 3). For
cases with adverse pressure gradients and heated walls, it still provides a
fairly good first approximation to the two-parameter methods, such as the
methods of Tani and Poots (Refs. 13 and 11). In view of these facts, the
following discussion will be limited to the one-parameter method and its
improvement.

The basic one-parameter approach of solving compressible
laminar boundary layer equations is exemplified by the momentum integral
method (Ref. 3), in which the momentum integral equation alone is used
and the energy equation is ignored. The details of the formulation of this
method is given in Appendix A. With the energy equation ignored, the re-
sulting heat transfer is obtained from the correlation parameters which are
derived from the similarity solutions. The energy integral equation, how-
ever, can also be used to compute heat transfer, and the results do not
agree with that obtained from the foregoing correlation. It has been shown
in Refs. 4 and 5 (see also Appendix A) that, only if the thicknesses A and

6 are proportional to each other over the entire range under consideration
will these two results be consistent. In general, the ratio A/® is not con-
stant throughout the entire range and the variation of A/6& as a function of

¢ will affect the computation of heat transfer. Hence if only the momentum
integral equation is used then, in certain circumstances, the method may
predict the velocity field with accuracy while the accuracy of the temperature
field will suffer. The accuracy of predicting the heat transfer can indeed be
improved if the variation of A/@ is taken into account. This can be done,
within the basic approach of the one-parameter method, by considering both
the momentum integral equation and the energy integral equation at the same
time and derive a new correlation based on both equations, as will be shown
subsequently.




2.5 Method of One-Parameter Correlation

2.5.1 Correlation Parameters and Reduced Integral Equation

The dimensionless parameters which are related to the terms
appearing in the momentum integral Eq. (2. 20) and the energy integral Eq.
(2. 21) can be defined and evaluated from the following expressions.

Ratio of displacement thickness to momentum thickness

He = -3— (2.22)

Ratio of enthalpy-defect thickness to momentum thickness
Q= _é\_ (2.23)
Velocity gradient parameter

m = ';'j.é-ed“‘(g A2) (2. 24)

Shear parameter

1=6fn (2. 25)
Heat transfer parameter
F= L S (2. 26)
B 1-%

The correlation parameters defined above indicate the be-
haviour of the boundary layer. The velocity gradient parameter m relates
the external flow conditions to that of the momentum defect and the enthalpy
defect. The '"'shape'' of the velocity field is indicated by the value of Hp
The relation between the momentum defect thickness and the enthalpy defect
thickness are finally linked by the value of Q.

If the momentum integral equation (2. 20) and the energy in-
tegral equation (2. 21) are added together, we have

Of, + P,A—(%QT) = "(@’f)*f‘,,E (Rrg) + fe EL qde @i (s Hr)  (2.27)

Substituting the correlation parameters into the resulting equations, we
finally have the reduced integral equation

%[(@=+Az)§]=1_ (2.28)




where
[+ He

I+ Q2

This the fundamental equation of the present approach. Its
solution, resulting in a determination of the parameter m is the first stage
in solving for the boundary layer characteristics. Then the parameter {
is used to determine the skin friction and the parameter T is used to deter-
mine the heat transfer. The use of parameters ! and T here means that
this approach is still confined within the limit of the one-parameter correla-
tion. Therefore the determination of skin friction and heat transfer depends
solely on the prediction of the parameter m.

L= f+7-2m (2.28a)

Since the integral equations Egs. (2. 20) and (2. 21) are in the
same form for both the two-dimensional and the axisymmetric flows, there-
fore Eq. (2.28) applies to both cases. However, the correlation parameters
which are based on the solutions of Eqs. (2. 9) and (2. 10) will be different
for two-dimensional and axisymmetric flows, In the following sections
these two cases will be discussed separately.

2.5.2 Two-Dimensional Flows

The fundamental requirement for a solution of Eq. (2.28) is
a relation between the parameters L and m. If some relation is assumed,
then Eq. (2. 28) can be integrated. In the one-parameter correlation method
this functional relation is determined from the known similarity solutions.
Based on the concept of correlation, it is assumed that the parameters { ,
T, Hp, and Q are functions of m and gp only (Ref. 3).

Equation (2. 28) can now be integrated to yield m as a function
of the external flow distribution. If m is known at a given point on the sur-
face, the boundary layer characteristics follow through the correlation para-
meters. Thus if £(m) is a known function for the specified wall tempera-
ture, the wall shear is then obtained from the correlation Eq. (2. 25).
Similarly, if r (m) is known, the heat transfer can be found from the correla-
tion Eq. (2. 26).

The numerical techniques for integrating Eq. (2. 28) were
given in Refs. 1 and 3 and will not be repeated here, When the wall tem-
perature is uniform, it is often possible to approximate the right hand side

of Eq. (2.28) as a piecewise linear function of m, and an analytical solution
of Eq. (2. 28) is then possible (Ref. 1, 3).

If we write
Lim) = A-Bm (2.29)

then by inserting Egs. (2.29) and (2. 24) into Eq. (2.28), a simple linear
first order ordinary differential equation results,

10




_Uegﬁe' = A - (2.30)

The equation (2. 30) can be simply integrated to yield

it e [ 2o ] e
where y
B' = e

The constant of integration C is determined at § =%, as
¢ =(o’ +A2)E, (2. 32)
If the integration starts from the leading edge of the body, then C = 0.

Thus for given external velocity and enthalpy distributions
and if the values of A and B are known for a specific wall temperature, the
value of m can be determined as a function of § from Eq. (2.31). The
boundary layer characteristics follow immediately from the previously
evaluated correlation parameters. Equation (2.31) in physical coordinates
is in the form

me - R P -PT)PLE [(8 R wen B (1- RT)H

27 Ue (2. 33)
x , S
+j AP""(I__PI"L)P UedX]
where o = 2--2;('— N
? — ,_,__5_ (2. 34)
= 2
P = fe/%s.

In order to compare the results of the present approach with
those of the momentum integral method, an example of a flow with an ad-
verse pressure gradient on a heated surface is computed. The case chosen
here was originally computed by Poots (Ref. 11). The exact numerical
solution is given. In this case, the external temperature varies as

T 1+ 5ME(1-§X) (2. 35)
N R =

and the external velocity varies as

2= Le (- Ly) (2. 36)

11




where % 28-1

X= | (%) dx (2.37)

Oa

with Pr = 1 and HM/Ha = 2, i.e., a heated surface.

The correlation functions for this case are evaluated from
the similarity solutions in Ref. 10 for Pr = 1 and the Chapman and Rubesin
temperature - viscosity law. The correlation of the function L. and m for
the present approach is given in Fig. 2, and the correlation of L and m for
the momentum integral method is shown in Fig. 3. The correlations for
computation of skin friction and heat transfer are shown in Figs. 4a and 4b
for both approaches. All these correlation functions are tabulated in Table
I. The values of o and F defined in Eq. (2. 34) are

¥ =1,90
(6 = 1,35

And the values of « and (5 defined in Eq. (A. 13) are

1. 286
3.50

| O
1l

These linear approximations for the correlations LL ~ m,
L ~ m are chosen to give good over-all agreement for the entire range of
adverse pressure gradients. In the case of L(m), the linear approximation
is valid only to m = -.0228. Thus it is not possible to extend the computa-
tion to the separation point of the boundary layer. The case with reference
Mach number, My = 6 is computed. The resulting skin friction and heat
transfer as functions of the distance along the surface are shown in Fig. 3.

The exact numerical solutions computed in Ref. 11 are also
shown in Fig. 5 for comparison. For the heat transfer results, the present
approach gives a higher accuracy than the momentum integ ral method.

The improvement in heat transfer is consistent with the discussion given
in Section 2.4, i.e., the energy integral equation which takes into account
of the variation of the ratio A/& should also be considered.

For a small pressure gradient, that is, from the leading
edge to about x/xg = 0.5, the skin friction predicted using the present
approach lies closely to the exact solution. As the pressure gradient in-
creases and the separation point is approached, the predicted skin friction
falls below the exact solution and becomes increasingly poorer, while that
obtained by the moment integral method follows the exact solution closely.
Since for the one-parameter method, the velocity field and the temperature
field are bound together. Therefore an improvement of the heat transfer
by "lowering' the heat transfer curve to the exact solution (see Fig. 5) may
cause a similar "'down drift" of the skin friction.
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However, for application to vehicle in hypersonic flight, it
is more important to predict heat transfer accurately rather than skin frict-
ion, because the drag of a hypersonic vehicle is caused mainly by the
wave system which it generates, while that due to skin friction is relatively
small. However, the heating of the surface of the vehicle affects the de-
sign of the entire structure. Consequently, method that will predict the
heat transfer with high accuracy is well worth developing.

It should be realized that although the one-parameter correla-
tion method indeed provides a good first approximation for cases with ad-
verse pressure gradient, it is still rather arbitrary by its nature as dis-
cussed below. Firstly, it is well known in the work of incompressible
boundary layers that the velocity field does not depend solely on the pres-
sure gradient parameter m (or A , as discussed in Section 2.4). There-
fore, the correlation of L(m) does not necessarily provide the proper re-
lation for every case (Ref. 7). Secondly, the velocity field and the tempera-
ture field should not be bound a priori, but should be allowed to develop
separately. Thus a further improvement of the solution can only be done by
relaxing all these restrictions as demonstrated by the two parameter meth-
ods (Refs. 13 and 11). It is also in doubt that the one-parameter correla-
tion method can be applied to flows with a sudden change of pressure field
preceded by a well developed boundary layer, such as some examples
illustrated in Ref. 12. This is because the actual boundary layer cannot
adjust itself quickly to behave like the similarity profiles which are used in
the correlation. However, if the pressure gradient is favourable and is
roughly linear, the use of the one-parameter correlation method should
lead to results with high accuracy (Refs. 1, 3 and 7).

2.5.3 Axisymmetric Flows

For flows over an axisymmetric body, similar solutions of
the boundary layer equation can be obtained in a similar way to those for
two-dimensional flows but with one more mathematical constraint (Ref, 25).
This condition appears in Eq. (2.12) and is directly related to the trans-
verse curvature of the body. If the boundary layer is thin in comparison
with the body radius, then ™ is approximately equal to unity. If [ is
approximated by unity, which is usual for general boundary-layer flows
except those over an extremely slender body or at very high speed, then
the equations of axisymmetric flow are in the same form as the two-dimen-
sional ones. The results obtained from the two-dimensional equations can
be applied to the axisymmetric case through a coordinate transformation
(Ref. 6, 7).

If " > 1, the boundary layer is not thin in comparison with
the body radius, then the additional constraint for obtaining similar solutions
is

G— = 2&; ’chose = consf‘anf (2' 38)

fe Ue v3?
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The correlation parameters now are also a function of G in
addition to the original parameters m and gj,. Equation (2. 28) can now be
integrated for axisymmetric flow if both g, and G are constant.

Some similar solutions for axisymmetric flows with " > 1
have been given in Ref. 25. However, the solutions were obtained only for
some particular conditions which do not provide adequate details that can be
used to evaluate correlation parameters. Hence axisymmetric flows con-
sidered in the following sections will be limited to cases with [ = 1 only.

3. APPLICATION TO HYPERSONIC LAMINAR BOUNDARY LAYERS

3.1 Basic Equations

For a slender body moving in hypersonic speed, the flow
field outside the body can be divided into three regions: (1) in front of the
shock wave extending from the leading edge or nose of the body, the flow
is undisturbed; (2) a boundary layer of viscous flow on the surface of the
body; (3) in between the shock wave and the boundary layer there exists a
layer of inviscid flow. We will consider the body to be thin and the hyper-
sonic small-disturbance theory applies to the inviscid flow outside the
boundary layer.

The method developed in the previous section can be readily
applied to compute hypersonic laminar boundary layers. The following
formulation is for two-dimensional flows. (It will be specified if axi-
symmetric flows are considered. )

In hypersonic flow the following conditions apply,

o2 s | (3.1)

2
and for flow over a slender body,

Ug 2= Ug (3. 2)
With these approximations Eq. (2.33) for calculating the velocity gradient

parameter m can be reduced to the following form with the integration
starting from the leading edge of the body.

- S [ e e @

where
A = 2_ _.{:_!._B
27

Equation (3. 1) is now in terms of physical coordinates which is useful for
practical problems,
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The correlation parameters m, | , T, Hf and Q defined in
Egs. (2.22) to (2. 26) are now evaluated from the similarity solutions of
Ref. 14. These similar solutions are obtained under the conditions that the
Prandtl number is 0.7 and in the limiting situation of a locally hypersonic
flow where u82/2He — 1. The power law relation for viscosity and tem-
perature is employed with w = 0.7. It has been shown recently that the
Pr = 1 solutions do not represent closely an actual fluid flow especially ir
predicting the heat transfer, which is particularly important in practical
applications to high speed flow (Ref. 15).

The quantities m, { , T, Hp and Q are listed in Table II.
- 0 A
Additional parameters —("r_fa'—z)_ ,d1+ 8% = , and C‘Vch are also listed.

These will be used for computation of displacement thickness, heat transfer
and skin friction respectively in Sec. 3. These quantities are also plotted
in Figs. 6 to 10.

The quantities A, B and o are evaluated from the correla-
tion parameters given in Sec. 2.5.1 and are listed in Table III. For a
given pressure distribution, if we know the value of A and « for the speci-
fied surface temperature, Eq. (3.3) will yield the value of m as function of
X. In the following we will derive some boundary layer characteristics and
the expressions for calculating skin friction and heat transfer.

3.2 Displacement Thickness

The displacement thickness plays a dominant role in some
of the hypersonic boundary layer problems such as the self-induced pressure
interaction. It is defined by

é“=r(:-%)d9 (3. 4)

Through the coordinate transformation and the integral thicknesses defined
by Eq. (2. 14) we can write

2 e he 3.5
g*=_f£:§e__t*h—z[(a+e)——,_,—e@] (3.5)

Since in hypersonic flow, % >

therefore & can be approximated as

(F = J2% H_¢<A+9) (3. 5a)

This is the expression we will use for all computations. From Eq. (3.3)
and the definition of m and Hp, Eq. (3.5) can be reduced to the form in
physical coordinates
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¢*. Cx Ma (r-1) (/+HF)’(_%&)'°‘JX (je_)“‘;,x (3.6)

Rew 2 It Q@*
where
o Ucs X
Rexw = —E“P‘:_—'
and

Porew

The quantity (1 + HF)2/ 1+ Q2 can be evaluated from the correlation para-
meters once the value m(x) is known and the displacement thickness is com-
pletely determined. The values of this quantity are listed in Table II and are
also plotted in Fig. 7.

3.3 Skin Friction Coefficient and Heat Transfer Coefficient

The skin friction coefficient is defined as

4 = (fwf:w (3.7)

where 7Ty, is the shear stress on the surface of the body.

In the transformed coordinates, we can write

C = Mo f_ @,, TC'm (3.8)

Using the hypersohic approximation and the correlation parameters, it can
be expressed in the form

W ( -1 [ xr(-%a)f%mj (3. 8a)

The quantity ’1 +Q21 depends on m(x) for a specified surface temperature
and can be determined from the previously tabulated parameters.

The heat transfer coefficient is defined by

Ch = ~ b (3.9)
4 (Om“w (Hm"‘ Hb)

where qp is the rate of heat transfer to the surface of the body. In the
transformed coordinates

(B £ S (3. 10)

Ch = Co 4 | -9

J—z
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The final form in terms of the correlation parameters is thus

e e (S [ ()] & T

Again the quantity (,J 1 +Q2/ Q) r can be determined as a function of m(x)
for a specified surface temperature.

A form similar to Reynolds' analogy can be written through
the correlation parameters as

G _ 2le (3.11)
Cu r

Equations (3. 10) and (3. 11) give explicit expressions for the
calculations of skin friction and heat transfer in a hypersonic boundary
layer for a specified pressure distribution. The quantities Ji+ @ r/Q
and &/ Cn are evaluated from the correlation parameters and are plotted
in Figs. 8 and 9 respectively for convenience.

4. HYPERSONIC LEADING EDGE SELF-INDUCED PRESSURE INTERACTION

4.1 Fundamental Equations for Boundary Layer and Inviscid Flow

The self-induced pressure interaction between the viscous
and the inviscid flows on a slender body moving at hypersonic speed results
from the relatively large outward streamline deflection induced by the thick
boundary layer. At hypersonic speed, the boundary layer displacement thick-
ness as shown in Eq. (3. 6) is proportional to the reciprocal of the square
root of the Reynolds number and to the square of the Mach number.

S*/“ Ma X
l'] RCXQ

If the free stream deflection can be approximated by the
slope of the displacement thickness of the boundary layer, the flow angle 8¢

e e :@ A~ M”‘
e d’x ,JRexa:

is thus proportional to the square of the Mach number. The induced pressure
due to the flow deflection is of the order of M6 (Ref. 5), thus

Me

F ~ RQ!m

is proportional to the cube of the free-stream Mach number. Hence for
hypersonic flow, even at high Reynolds number, the pressure induced by
the thickness of the boundary layer is no longer negligible in general.
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The self-induced pressure interaction can be divided into
asymptotic regions, namely the strong and the weak intereactions (see
sketch in Fig. 13). In the weak interaction region, the effects produced by
the self-induced pressure gradient are essentially perturbations super-
imposed on an already existing uniform flow. The strong interaction region
is characterized by the fact that the streamline inclinations induced by the
viscous layer are large and the pressure gradient and viscous stress
gradient terms are of the same order of magnitude. Thus the strong inter-
action region is close to the leading edge, while the weak interaction region
is farther downstream. Between them there is an intermediate region in
which the interaction is neither weak nor strong and the solutions are not
of an asymptotic nature.

A number of papers have been published concerning the
interaction problem. A complete discussion of this problem with a review
of previous investigations is given in Ref. 5. Most of the previous investi-
gations deal predominantly with the asymptotic regions using either pertur-
bation or approximate methods to solve the boundary layer equations with
the pressure gradient in these equations determined from the effective body
shape. Solutions valid through the complete interaction range have been ob-
tained by either numerical integration of the complete boundary layer equa-
tions (Refs. 19 and 20 for example) or by approximations such as the
Karman-Pohlhausen method (Refs. 16 and 17) or the local-similarity method
(Ref. 14). In the following section, an attempt is made to obtain an approxi-
mate solution of this problem valid through the whole range. By using the
method developed in the previous sections it is possible to provide a simple
formulation which will give a higher accuracy to the solution than the local-
similarity method and with much less effort than the exact numerical
solutions.

A flow model similar to the one described in Section 3.1 is
used. The leading edge or the nose of the body is assumed to be sharp so
that the effect of bluntness is negligible. We assume further that an effective
body can be constructed, the thickness of which equals the sum of that of the
original body and the displacement thickness of the boundary layer. The
pressure field of the external inviscid flow is then determined by the effect-
ive body shape. This assumption of an effective body does not in fact match
the viscous and the inviscid flows. It does, however, provide a good approxi-
mation (Ref. 5) and allows the viscous and the inviscid flows to be treated
separately.

The equations developed in Section 3.1 and 3.2 can readily
be applied to this problem. We rewrite the pressure gradient parameter
m and the displacement thickness §* as

N e
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The tangent-wedge relation is used as the solution to the ex-
ternal inviscid flow because of its simplicity and the explicit relation be-
tween the local pressure and the local flow inclination. Hence the pressure
distribution is known once the effective shape of the body is given. The
tangent-wedge formula (Ref. 5) is given by

-f;: =]+ Mo b [J(I;r—')% M,;ee* + _’Z_tl] (4.3)

2 Cx Mo ("z—l)xA (1+He ) (ﬁ)’dJY%)“‘&x (4.2)

where 6, is the local slope of the effective body which consists of the geo-
metric slope and the gradient of the displacement thickness

be = 6, + 4 (4. 4)
This approximation without a centrifugal correction is accurate to order
(Mo Qe)z. Since the curvature of the outer edge of the boundary layer on a
slender body is small, the centrifugal effect on the external flow is negligible
throughout most part of the interaction range, except very close to the lead-
ing edge of the body.

In general, the shape of the slender body is specified with
known surface temperature. Then we have to solve Eqgs. (4.1), (4.2) and
(4. 3) simultaneously to obtain the pressure distribution and consequently
the boundary layer properties.

Before we proceed to the solution of these equations, some
parameters are introduced so that the equations will be in non~-dimensional
form. If we introduce the interaction parameter %

= MadC (4.5)
,‘ Rexe

The nondimensional form of the displacement thickness is thus

PR LI (4. 6)

C/Jao o

Equations (3. 3) and (3. 6) then reduce to

e SRR (B) R (.

oo (B A e

Xo
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and the tangent-wedge relation becomes

JX(J"”) =
,) \’*‘l

This set of equations forms a complicated integro-differential system for
the variables Pe/Poo and &* , and prevents further attempts to obtain
analytical solutions. However, these equations are in a form which lends
itself to a successive approximation scheme. They also provide a direct
and simple method to obtain solutions to the asymptotic regions.

(4.9)

4.2 Asymptotic Solutions

In the weak interaction region, the flow deflection resulting
from the growth of the boundary layer is small. Under this condition, the
local hypersonic similarity parameter K must be less than or of the order
of one, where K is defined as

K=Ma (65+ 95) (4.10)

If K<! , the induced pressure expressed by the tangent-wedge formula
can be expanded in a series for small values of K (Ref. 5)

%=,+,K+ (Ceel) ki v o(k?) (4. 11)

For sufficient small pressure gradients, Eq. (4.2) shows that

& v Malc

Y d

x 2 A Rexa

Therefore for the weak interaction on a flat plate (8, = 0), the hypersonic
similarity parameter K is found to be proportional to the interaction para-
meter %

K= Mpd8 o 2L M C = (4.12)

- dx 2 Rera 7

This permits an expansion of pressure in terms of X as

Peo b s a4 (4.13)

Pe

The coefficient aj and a9 can then be determined by the Eqs. (4.8) and
(4. 9) and yield

_oxlr=1) a+He [A (4. 14a)
“E T e :
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v(r+:)(t’-4)‘('+HF)ZA (4. 14b)
32 |+ Q2

o

The value of (1 + HF)2 /1 +Q2 is taken at m = 0. This is done because this
quantity is a slowly varying function of m as shown in Fig. 7. Thus an
appropriate value within the asymptotic range of the problem may be chosen
without introducing significant error.

In the strong interaction region, the flow deflection resulting
from the growth of the boundary layer is significant, and K2>> 1. The
tangent-wedge formula can be expanded for large values of K as (Ref. 5)

e _ X(¥H1) 2 3rel Br I
o = 2 Ko (r+1)57<7+0(7<7*) (4.15)

The pressure variation at this region is close to p ¥ %"  withn = - 1/2
(Ref. 5). Equation (4. 2) shows for this condition that

fe & x| MadC
?a x z Re:(a:

Since Pe/Poo"’Kz , therefore for the strong interaction on a flat plate the

hypersonic similarity parameter K is proportional to the square root of the
interaction parameter

K~ XZ (4. 16)

Hence we expand the pressure distribution in a series for X

-fi =a,%+ b € , . ..
?m 2% 2 t b (4.17)
The coefficients ag, bg, Cg, ... Can then be determined from Eqgs. (4.8)
and (4. 9) and yield
_ 3 Ayr+ ) (-0 [ A (44 (4. 18a)

R 2z Mg

(d=4)(3r+1)
(t=9) (r+1)

5 =

(4. 18b)
Here again, the quantity (1 + I-Qz / 1+ Q2 is evaluated at the value of m
corresponding to 4 o x"F .

These coefficients for both the weak and the strong interactions

are evaluated for Pr = 0.7 and are listed in Table IV. Comparison is also
made with results obtained by other authors.
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Once the asymptotic solutions of the strong and the weak
interaction is known, the skin friction and heat transfer can be computed
immediately. The pressure gradient parameter m in Eq. (4.2) and the
heat transfer coefficient in Eq. (3.6) are used for the computation. The
results are shown in the following.

For weak interactions

M=%A(J2—a,%+b,7zz+---) (4.19)
~ — 5 7t 1 _
M2 G= 3 [ (a v 2b Bo )70 [P (4. 20)

For strong interactions

_ -l | 3 b, L .. . (4.21)
m = Sy A [3—0( (4-)(3-%) Q2 X J
Y-t a3 E Qo )
3 Ch = -ZL[—Z;—( %z X )]2 x - (4.22)

The quantity (Jl + Qz/ Q) T is given in Fig. 8 as a function of m for
different surface temperatures. The cross-plot of the linear approximation
of this correlation against gy, is given in Fig. 12. The skin friction coefficient
can be computed from the Reynolds analogy Cyf/Cy using the values of m

and M3 Ch. The Reynolds analogy is given in Fig. 9.

It is interesting to note that the equilibrium wall temperature
for an insulated plate is altered even to the first order in Z in the weak
interaction region. This was first pointed out in Ref. 18 (see also Ref. 9),
and can be shown by the present approach. For flows with small pressure
gradient, the equilibrium temperature on an insulated surface is related
to the parameter m as (see Table II)

Ty

To

These values are evaluated from similar solutions in this report and a
linear approximation is used for the correlation. For the weak interaction
on a flat plate, the value of m is given in Eq. (4.19). Therefore, the varia-
tion of the equilibrium temperature on the surface of an insulated flat plate
is

= 0.819 - 0.65 m (4. 23)

Sl

=081 -ocssLla(faX+bx ) (4.24)

For VY =1.4, Pr=0.7and w =0.7.
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_%zo.glq_o‘oos77_(:+\u (4. 25)

The result given by Ref. 18 is for Pr = 0.72 and w =1

s

= 0 848 - o, X +.. .
= B48 - C.cos X

The slight difference in numerical value of these two results is due to the
effect of the viscosity-temperature relationship.

4.3 Complete Solutions and Examples

In the previous sections the equations for calculating the dis-
placement thickness and the pressure gradient parameter are formulated
(see Eqs. 4.2 and 4.3). The tangent-wedge formula is used to govern the
local pressure and flow inclination at the edge of the boundary layer. These
equations are then solved numerically by an iteration scheme for different
surface temperatures. The details of the numerical technique is given in
Appendix B. These equations yield the pressure distribution and the
pressure gradient parameter m as a function of the interaction parameter
% . Once these are known, the skin friction coefficients and the heat trans-
fer coefficients follow immediately as described in the previous sections.

Several examples are calculated in order to compare the
results obtained from the present method with experimental measurements
and other theories.

The other theoretical results which we use for comparison
are those due to Flugge-Lotz and Blottner (Ref. 19), who solved the
boundary layer equations exactly by numerical methods. Like the present
work they assumed an effective body and then used the tangent-wedge
formula to compute the external local pressure. Their work was chosen
for comparison because their flow model is the same as in this case, and
the boundary layer solution is exact in their case.

Solutions in closed form can be obtained by combining the
present integral method and the local similarity technique. The details of
the derivations are given in Appendix C. The results obtained by this
method are also shown in most cases for comparison.

Figure 14 shows a comparison of the surface pressure dis-
tribution on an insulated flat plate with a sharp leading edge with experi-
mental data obtained by Kendall (Ref. 21) and Bertram (Ref. 22 and 23).
Bertram's results obtained on a plate with a slight temperature gradient
and heat transfer, and were corrected approximately to an insulated case.

In general, the present results follow the trend of the experimental data
closely and lie a little lower than the data. The asymptotic solutions obtain-
ed by the present method are also shown. The numerical solution by Flugge-
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Lotz and Blottner gives higher values than the present solution. The local
similarity solutions give lower values than the integral method. This
deviation gets larger as the leading edge is approached, i.e., at large
values of %

In Fig. 15, the pressure distribution on a cold flat plate ob-
tained by the present method is compared with experimental measurement
obtained by Hall and Golian (Ref. 24). The present results follow the ex-
perimental data closely, except near the leading edge where the predicted
values are higher than the experimental data. It is interesting to note that
the present solution nearly falls on the Flugge-Lotz and Blottner exact
solution for Pr = 0.72. The solution using the local similarity method, like
the previous case, predicts lower values than the integral method and be-
comes worse as the leading edge is approached. This is expected since
the local similarity method is based on the assumption that p = x", and
n is a constant locally. Thus, it neglects the upstream influence due to
the change of the value of n. Since the displacement thickness increases
as n decreases, (see Eq. (4.2), in this case, the pressure gradient is
negative). The value of n is always larger upstream from the point under
consideration. Therefore, the displacement thickness predicted by the
local similarity method is smaller than the actual value. Consequently,
the induced pressure due to the displacement effect is lower. However,
since it provides a closed form solution and is simple to calculate, an
approximate solution to the problem can readily be obtained if high accuracy
is not required.

The skin friction coefficient for this case is shown in Fig. 16.
Only the solution of Flugge-Lotz and Blottner is shown for comparison. No
experimental data has been obtained for this case. Again, the present re-
sult agrees very well with the more exact solution.

The heat transfer coefficient for the same case is shown in
Fig. 17. The experimental results were obtained by Hall and Golian in the
same series of experiments. In general, the present results predict lower
heat transfer rates than those obtained experimentally. The agreement with
experiment is better at the strong and weak interaction regions. Beside the
results of Flugge-Lotz and Blottner, the zero pressure gradient solution
for Pr = 0.72 and Whalen's solution given in Ref. 24 for strong interaction
are also shown. The present solution approaches these more exact solutions
asymptotically. The solution using the local similarity method gives higher
values than the integral method and thus lies closer to the experimental data.
This interesting point was also illustrated in Ref. 14. This is again a con-
sequence of the assumption of locally similarity flow which neglects any
upstream influence. The heat transfer coefficient defined in Eq. (3. 10) is
proportional to the gradient of total enthalpy at the wall gnp- This quantity
is given explicitly by the energy integral Eq. (2. 16),

—%i:/\[l'*z—/\f—%] (2. 16)
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With the local similarity assumption, the t dependency of A is neglected.

Thus
D A (4. 26)
Py

The error due to the omission of the second term in the right hand side of
Eq. (2. 16) can be estimated with the help of the similarity solutions as dis-
cussed in Appendix C. This term can be written in a similar way to Eq.

(C. 4),
T (F#)(£5) (4.27)

Since the pressure gradient is decreasing from the leading edge, "‘s/o(g

is negative. However, the similarity solutions show that d/"/d@ is posi-
tive, (see Table II, where ¥v=[A/((~=9s)P1* ) . Therefore, the term
neglected in Eq. (2. 16) is negative. Hence if the upstream influence is
considered, the value of gpy will be smaller than that of the local similarity
solutions. Therefore, the heat transfer calculation from the local simil-
arity method will give higher values than the integral method and the other
solutions in which the upstream influence is considered.

4.4 Axisymmetric Flows

In the previous discussion of axisymmetric flows, it was
pointed out that a general formulation including transverse curvature effects
cannot be obtained because of the inadequate number of similarity solutions
for 7 > 1. Thus we are limited to deal with cases where | can be
approximated by unity.

If 7 =1, the axisymmetric equation can be reduced to the
two-dimensional form through the well known Mangler transformation
(Refs. 6 and 9). This transformation is a particular case of our original
transformation (2. 7a), if r is replaced by rp, for the y coordinate trans-
form. The main consequence of this transformation is that the assumption
r, > % holds.

The pressure gradient parameter and the displacement thick-
ness can be written in the form (for [ = 1)

m = - _Y% [% (%”(%)“j %)“-'Y; i (4. 28)

and

G+ C'XM: ()’-—I)IA(I-\‘—HF)Z (_fe__)'“/ (%)v—k:d“ (4.29)

Rexs 2 v+ Q3 ?w

The induced pressure due to the local flow inclination can
be approximated by the tangent cone formula, if
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Ke = Mabe =Ma (0, + 457 (4. 30)

where 6, is the half cone angle. Then for K¢ > 1, Lees’ result for slender
cones when the conical shock wave is not too far away from the cone sur-
face can be used (Ref. 26)

5 2 Y+ 4.31a)
%_1 _ ;+r' (K;—l) + ((Ks—Ke) [—_—-“_');'72@ , ( a

Ko = —%‘;Ke + j(m Ke)ﬂ 2 (4.31Db)

where Kg = M, 8g is the half angle of the conical shock and Ke = M, 6e.
The relation of Kg and K, can be approximated by the form

Ks [ 0 (4.31c)
Ke 2 Ke*

An example is shown in Fig. 18 in order to compare the
theoretical prediction of heat transfer with experimental measurements
obtain by Wittliff and Wilson (Ref. 28) on a 10° slender cone. The theo-
retical prediction in general lies lower than the average of the experi-
mental data. For a slender cone at high Mach numbers, Mg = 11 ~ 13,
this discrepancy can be accounted for as arising from the neglect of the
transverse curvature effect. A correction based on the result of Prob-
stein and Elliot (Ref. 29) for slender cones with zero pressure gradient
is given as

T s
MEC, = MCBQ,)M%[O.:H%# 0‘9/3(%&)*0-’“ Cr-r)Me J (4.32)
— l
%5+anecMg+’

where Chyy, is the heat transfer coefficient obtained through the Mangler
transformation. Strictly speaking, this result holds only for Pr = 1 (and
zero pressure gradient), but is used here just to show the effect of trans-
verse curvature. The corrected curve is also shown in Fig. 18.

5. HYPERSONIC LEADING EDGE SELF-INDUCED PRESSURE INTER-
ACTION WITH WEAK DISSOCIATION AND INFINITE CATALICITY

3.1 Introduction and Assumption

In hypersonic flight, real gas effects due to the inherent
high temperatures begin to play an important role. Dissociation occurs,
for instance, across the strong bow shock wave formed in front of a blunt
body. The chemical reaction then carries on downstream into the boundary
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layer and on to the surface of the body. The shock wave formed by a slender
body, on the other hand, is not so strong that chemical reactions are likely
to be present in the inviscid flow. The gas phase reaction present is pre-
dominantly that of dissociation in the boundary layer because of the high
viscous dissipation. In the boundary layer, the relative magnitudes of the
convection and reaction rates are generally different and their coupling is
further complicated by diffusion of the chemical species. Thus one may
expect that the boundary layer associated with these flows will exhibit vary-
ing degrees of chemical nonequilibrium.

Nonequilibrium boundary layer flows have been investigated
by several authors. Chung and Anderson (Ref. 31) used integral methods
and obtained solutions for dissociated oxygen over an adiabatic flat plate
with a noncatalytic surface. Solutions obtained by numerical integration of
the complete boundary layer equations were given by Blottner (Ref. 32).
An analytical solution is given by Rae (Ref. 35) based on a perturbation of
the frozen solution at the leading edge. This approach was later used by
Inger (Ref. 36) to study a flat plate boundary layer with a self-induced
pressure field and zero catalycity on the surface.

The presence of dissociation inside the boundary layer may
change the properties of the boundary layer greatly from those with perfect
gases. The energy distribution will be changed as the molecules are
dissociated into atoms and energy is partitioned during the process. On
the other hand, the self-induced pressure field may change the chemical
process since the reaction rate is controlled both by temperature and
pressure. This interplay between the pressure field and the nonequilibrium
reaction may modify the aerodynamic heat transfer.

In this section, the integral method associated with the local
similarity concept is used to examine the nonequilibrium boundary layer .
with a self-induced pressure field over a flat plate. The gas is assumed-
to be a diatomic gas mixture composed of atoms and molecules. The
Prandtl number and the Lewis number are assumed constant. This assump-
tion tends to break down for a highly dissociated gas because these para-
meters are affected strongly by dissociation. For a weakly dissociated gas,
we further assume that the specific heat is approximately that of the mole-
cules. Thermal diffusion is also assumed to be negligible. These assump-
tions appeartobe asatisfactory engineering approximation in analyzing
boundary layer flow over a non-ablating and highly cooled surface, unless

the finer details of the temperature and composition profiles are of interest.
(Refs. 31, 35).

The specific heat of molecules for a diatomic gas depends on
temperature when the rotational and vibrational modes are considered. In
the following computation, this temperature dependence is neglected. Al-
though this assumption is unnecessary in the formulation, it is adopted in
order to facilitate a later comparison with some other work that does in-
corporate it,
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5.2 Boundary Layer Equations

A weakly dissociated diatomic gas such as oxygen is assumed
to flow over a flat plate at hypersonic Mach number where considerable
viscous heating occurs within the boundary layer. The external flow is con-
sidered to be such that the dissociation level at the edge of the boundary
layer does not change. Interaction effects that may arise from the self-
induced pressure field due to the rapid growth of the boundary layer near
the leading edge are considered.

The conservation equations given in Sec., 2.1 are generalized
to include molecular dissociation. The effect of radiation and thermal
diffusion are neglected, and only two-dimensional cases are considered.

Continuity:
Jeu | dpV (5.1)

PR 2Y
x~-momentum

(/.4 i‘_‘_) (5.2)

oH oH _ 3 2H
fu—*w'a—{{'ég(%a )+

as

Species continuity: (Ref. 30)

3¢, 3¢ _ ¢, . 5.4
PUSR * U5y = sy (RDegg) +s (5. 4)

where (i 1is the mass fraction of the species. For a binary gas only,
the species continuity equation for the mass fraction of atoms is required,

The boundary conditions are:

aty =0
u=20
v=20
either H = Hy for the heat transfer case

IH . .

or T"X =0 for the adiabatic wall (5.5)

either Ca =0 for the fully catalytic wall

or A_C%i zo for the fully non-catalytic wall
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aty = oo

u=ua)
H=Hm
CaA =ce

The equation of state for the mixture is

- R
% ,m(uc‘)r (5. 6)

The coordinate transformation (2. 7) for the two-dimensional flow is

X
$tx)y = f £ o Ue dx

3
(xy)e 2
1x49) J-;K_j. e dy

The equations for the conservation of momentum, energy,
and chemical species then have the form

(5.7)

Momentum:
2 d b v
(N a”a ps_ﬁ e [ﬁ %f_”wﬁ (5.8)
3’ af »f .
?[ 3N a'{ br) 33 aqa]
E
nerg}; N2 '?a ue 2 [(I—J-)N.éf_fj'_]
33.(—?7 aq) * ] * edl) WA METE o
5.9
hw =ha S
e 3R] 16 -3
Species:
Nle 32 3 _,of dinee 38 do
z,'z(—F—aq) + 7 22 N ding c;ueilf% 10
T )
where f__._ L 4 gy
= H
3 P (56.11)
- Ca
2 =%
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It is more convenient to use the following approach by formulating an
energy equation which does not include the dissociation energy (Ref. 37).
The total enthalpy is given by:

H= > fe +Tu’ (5.12)

izl

where, in general, when Cp is a function of temperature and for constant
pressure across the boundary layer

ha =j TpydT + Ay (5. 12a)

A :/gTCPMO(T

(5.12b)
Now
H=Cha + (1= Cohm+tu?
‘:.CA(A‘-Lm)""t\M‘("%:M"
Since
. T
4\9—'4\m=l\5 +f. (CfA—CPM)dT
and
) T
b > [T (qu-GurdT
therefore
4\4"’4\’" ~ A (5.13)
Thus we have for the total enthalpy
H = dw+ Chi + £u? (5. 14)
The partial enthalpy is defined as
Flg = dm v g u” (5.15)

The partial enthalpy equation can then be derived by multiplying the
species equation by +4; Ce and subtracting the resulting equation from
the energy equation; the final form is
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D N9y L 13 | ul S W3 7 27 dx W &S
bq(Pr aq) ¥aq '—,;av’[“("'P%)'éﬂ *n‘] %a%?'ﬂ; 5. 16)
R .
(3 - g
where 3.(:—&"—‘

With our assumptions, we can now integrate the momentum,
the partial energy, and the species equations across the boundary layer.
The following integro-differential equations are obtained:

fun = 002 4E - R dcave) @11

S 2F do [ 5.18
%zb = A *"ff%%"%#;%ﬁ'l%Lﬁ J%—dq ( )
LRSS 8-+ S 19

where & = [ (f-{)dy
@=fﬂ(l-ﬁ)dq
A= [ H-gd
/\*=j."7%(n—%)”"?

(5. 20)

The subscript 1 refers to partial differentiation with respect to Q

5.3 Chemical Reaction Term

The chemical kinetics are taken to follow the reaction

A3+X‘—,F—A'+A'*x (5'21)

where A, Ag, and X represent the atoms, molecules, and inert collision
partners, respectively. The law of mass action yields the rate of change

of concentration of atoms per mole of the mixture for the above reaction
(Ref. 38)

28 = 24y [][X] - 24 [AJTX] (5. 22)
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where [A;] , [A2] , and [ X] represent the mole concentration of the
atoms, molecules, and inert collision partners, respectively. When the
mole concentrations are written in terms of the mass fraction of atoms,
CA, we have

[A:] e (5. 23)
[x] = (1+a)f

Thus we have

_pG) . K P+ ) T ma 4 ) (5.24)
SR 7 (3 4 o-w-e]

The ratio kd/ky can be evaluated at the equilibrium con-
dition, and is defined as the equilibrium constant based on mole concen-
tration. At equilibrium, the net mass production rate is zero, thus

ke = ka2 e (5. 25)

4 Ma | - Ce

where KC is the equilibrium constant based on mass concentration. The
mass production rate term is

! 2 3 _ Cat
Yo sh (E) [T -wtE (5. 26)

In the examples we will compute below, oxygen is consider-
ed as the working medium. We follow Chung and Anderson (Ref. 31) by
choosing the transport properties for oxygen as

.98 x 1072 Cmé
Zkv = T? ( moled-sec )
. _ Ke
- 4p (5.27)

Kp = exp (15.8 - ——60%?00)

where p is in atmospheres and T is in degrees Kelvin; K
brium constant based on partial pressure.

p is the equili-

The final expression of the reaction term becomes

\

_v_ér_ _ 3.96x10™ (_E_)

T4 R

oA _ 60000\, s’
[E—UF('S\B T )(' &) - I+CA] (5.28)
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In the transformed coordinates, the reaction term appears
both in the species equation and the partial energy equation in the form,
from Eq. (5.26)

—g—a%=——§—4kv(%)l[ ¢e (1-¢a)- C“:] (5.29)

e 4% ue 1 Mo (=Ce <G
The quantity ",1{ = 4 v (%—')2 can be interpreted as the reciprocal of a
characteristic time for the reaction. The quantity
L
f=_3%% o XLue (5.30)
o o ue X

is a characteristic ratio of flow time to reaction time. Thus ¢ — 0 de-
notes that the reaction is nearly chemically frozen and 6— oo corresponds
to the near-equilibrium condition. On a slender body or a flat plate, the
flow is chemically frozen at the leading edge ( §—~0). Non-equilibrium
processes develop as the flow proceeds downstream. The equilibrium con-
dition can only be reached far downstream where the recombination rate is
equal to the dissociation rate. The reaction term vanishes when the flow
reaches equilibrium.

5.4 Skin Friction, Heat Transfer, and Displacement Thickness

The shear Tb» on the body surface is

T;,:/ub(%‘%—)b (5.31)
and the skin friction coefficient is defined again as in Eq. (3. 7)

2T
S Slrowrr] (3.7)

In the transformed coordinates
_ M e *(ﬁ_)
C'j’ - J? (%;)( Um) a"]‘ b (3.8)

In the following case we will consider the degree of dissociation to be
small, i.e., cp « 1. With this simplification and with the self-induced
pressure in mind, the skin friction coefficient can finally be put in the
following form

Rl .52

where Rey, = foUsx
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and M, T
M T T

and we have used the hypersonic small disturbance theory where ue == ug,.

From Eq. (5.32) we can see that for a slightly dissociating
gas the effect of dissociation on the skin friction appears through the
gradient of the velocity profile for a specified pressure distribution since
dissociation affects the momentum equation (5. 8) through the density in the
pressure gradient term only. For a slender body with a highly cooled sur-
face this pressure gradient term is very small. Thus the velocity profile,
and therefore the skin friction, is practically uneffected by slight dissocia-
tion.

The heat flux through the boundary layer to the wall for a
dissociating gas is

= [A3T « eDa Gl 20,
(5.33)

[’k%%* fDn't‘c—C‘s—‘

When these terms are written in terms of the transformed
coordinates and in nondimensional form we have

-4, = we [——Hr.(%ir—) - de g (4 ] (5.33a)

We define the heat transfer coefficient as

L L (3. 9)

POO Um(Hw"Hb)

With the slight dissociation assumption, we can write

Jc x Hre A
N A [ﬁ;“J o lome e ], 6. 34)

We can see from Eq. (5. 31) that the heat transfer to the
body surface is accomplished by conduction due to the temperature gradient

and the release of energy due to recombination of atoms diffused onto the
surface of the body.

Since we are interested in the self-induced pressure effect,
the displacement thickness which will be used in the following calculation
is now written as
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(5. 35)

X b, y i -
¢ = Nﬂii” [XL_;;: 'KJ J.(—%(l-f—a)-')c?)dr?

Again we have made use of the slight dissociation simplifica-
tion for the coordinate transformation.

5.5 Method of Solution

The solution of the three coupled partial differential equations

(5.8), (5.9), and (5. 10) can only be obtained by numerical integration.
Blottner (Ref. 32) has demonstrated this approach and several particular
solutions were obtained. Since the reaction term depends explicitly on the
distance from the leading edge, similar solutions in the same sense as for
a perfect gas do not exist even for a flat plate without pressure gradient.
However, if the boundary layer characteristics depend only weakly on s
then we may assume a priori that the dependent terms are small in magni-
tude in comparison with the rest of the terms and can be dropped from the
equations. Thus we obtain a set of ordinary differential equations with all

t -dependent quantities evaluated locally. Solutions of these equations for
a particular case were also obtained by Blottner (Ref. 33). These were com-
pared with the exact solutions obtained by solving the complete set of partial
differential equations. It is interesting to note that the gradients of the tem-
perature profile and the atom mass fraction profile from the local similar
solutions deviate by less than five percent from the exact solution at a dis-
tance of five feet from the leading edge for the case Blotitner computed.
Thus it is convincing that the local similar solutions still provide a fairly
good approximation to the exact solutions.

With the local similarity assumption, we can now drop all
terms containing derivatives with respect to ¥ and make all { depend-
ent quantities assume local values. Equations (5. 17), (5.18), and (5. 19)
are simplified to

S = © )i%(‘”@) (5.36)
hs 25 dx [7 o
LR de 2f 9 7] €N (5.37)

(5.38)

The temperature profile which appears explicitly in the mass production
term is determined from the partial enthalpy and the velocity profiles,

%:%(91——%‘)*%3 (5.39)
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If Cpm is assumed constant, then

T _ He _fay L L2
T = m - R - (5. 40)
It was already noted that this assumption is unnecessary in the calculation
and that it was adopted for convenience in order to facilitate a later compari-
son with some other work that incorporated this assumption,

The first step in solving these equations is to assume appro-
priate profiles for the velocity, the partial enthalpy, and the atom mass
fraction. A sixth degree polynomial is assumed for the velocity profile,
and a seventh degree polynomial for the partial enthalpy and the atom mass
fraction profiles (Refs. 31, 39). Thus

% = Z ang”
9v = i bn {7 (5.41)
6 =3 et
where
- _g_ (5. 41a)
and S
$= %f 1 (5. 41b)

Five boundary conditions are required to determine the
coefficients of the velocity profile polynomial. One coefficient is left to
be determined by the equations. Similarily, six boundary conditions are
required for the partial enthalpy and the atom mass fraction profiles, re-
spectively, and the rest of the coefficients are determined by the equations.
Besides the boundary conditions given in Sec. 5.2, additional conditions
can be obtained by differentiating the equations with respect to v and sat-
isfying them on the body surface.

Thus we have for the velocity

T=o0: =0

- T =1
v ! ‘;*1 (5.42)
m =0
'&m'l =0
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For partial enthalpy
(=0 9r= 9r,

2 'Pf ° \
(), = s (L)~ 2R A

§=l ; dr=1, PALIC I Sm=o

For atom mass fraction

=0 ¢ o0 for a fully catalytic surface
. 2% dx W
(‘me)a, = - %juz Z’f (T)L—ICZ

(5. 44)
_ _P2% dx U3 ik
('me)L LeT-‘% -§ Ce aq(f)
T=1; =1, Zg >0 | Zpp =0

From the momentum equation, we can see that the pressure
gradient parameter

_ T fe dimue (5. 45)
=-4 148 dini

can be written through the coordinate transformation

[ % ad)
> (5. 45a)
(%iy dx

For a small pressure gradient and very cold body, Yy, — o , ag has a
very small value. In fact, the coefficients of ag in the equations are also
small after the polynomial profile is determined. Thus all terms contain-
ing ag are very small in comparison with the others and can be neglected.
Physically, this means that the pressure gradient effect is extremely small
in these equations. With the pressure gradient term neglected, the mo-
mentum integral equation decouples from the other equations and reduces
to a simple algebraic equation. The solution of this equation is of the form
(Ref. 39)

= - 42 9r,

¥Q=2§—S§4+L‘(’_2§‘ (5. 46)
and § is given as
7% = 18018
RCE (5. 47)
T = 4.28

By choosing bj and ¢ to be determined by the equations,
the coefficients of the polynomial profiles for gy and Cs are determined
by the boundary conditions (Ref. 39)
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by = — 3 rEE
. TF 7 (E (5. 48)
by = 35(1—eb)—;ob.-loba—4b5
be = -84 (1-2,) t45b,+ 20bs + 6b,
by = 76 (1=2) = 304, ~15b, =~ 45,
by = -2e(1-2;) +10b, + 4ba+ by
and
Co = 97,
- Uue - 2 d 4\0 ¢a "\J
C, = (1 Pv)('an) + 'Z‘ ?"‘_'f;?vs (?)L
- 1 & dx _‘mf_
&= Yt (R,
(5. 49)

= 35(1-9n ) ~20C - 106~ 4 Cy

Zs =~84((-9n) + A45C, + 20C + 6Ly

™
o~
]

70 (1-9p) - 36c. - 150, - 40

G; =-20(1-4p)*F 10€ + 4C, + G

Now the two integrals A and A which appear in Egs.
(5.37) and (5. 38) respectively, become

=3, .o ass 151 §21 5.50
A IJE( 3“) 340340 & - G069 - |2012 G ¢ )
and
¥ _ 30 . __4ss 151 2
N =3 OB - b - qo0q ) - ,8“,, ¢ (5.51)

The chemical reaction term
Toax (! ur
wag ), et
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can be written with the small dissociation assumption

* €
J drx |
PRt Pey? <1022 | 529, 054 _ 60000
(R) 3.96 x 10 == T((_Q)u}:(lﬁe = )(5.52)
. Qz

Y ]

A simple iteration scheme can be constructed to solve for
b; and ¢ from Eqgs. (5.37) and (5. 38). By eliminating the chemical react-
ion integral from both equations, we obtain an algebraic relation for b; and

€1

Y 953 L
(f‘i‘_ﬁv * |§?|1)C' T 7 Hre [ 360 340 by + q‘:q byt ( Py%‘+ 42802112) L']

953 (51 (5.53)

| - _ -
*[TS:T(' 9%) ~ $go3g0 B ‘?w‘?c’]

where ce = 0 is assumed for the species integral equation (5. 38).

The species equation gives

e 821y, _ 2% dx (' - _gs3 15
(gaPr + ,20/2)‘“"%?{? . (—ué-_)d'g 3603601[)5 - qocq L‘ (5,54)

For a given pressure distribution ’Po.(X) , we can solve equations (5.53) and
(5.54) for by and c1. Once this is done, boundary layer characteristics
follow immediately. Although the pressure gradient is neglected in the
computation of the velocity profile, the effect of pressure still appears ex-
plicitly through the chemical reaction term since the chemical reaction
rate is governed by both temperature and pressure. v

In Eq. (5.48), both the coefficients b2 and b3 are directly
proportional to (%ke)(4%X/d3) = %/ue which is very small when the velocity
ue is very large. Thus b2 and b3 can be neglected in comparison with by,
hence

b ~ o
(5.55)
b; =0
It follows directly that

Uez 2
G o= Ci-?) fm (5. 56)

¢ =o

Equation (5. 53) reduces to

l 82 . hs e 82| 3 gy S J
(gzp, ¥ lnmz)c' = _Hizb' (S‘Pr * )2012) * |20 (1-9) qoo% G (5.57)
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Since gj, and c2 are known, this equation gives a direct relation between by
and c1. With by =b3 = 0, and for zero pressure gradient, Eq. (5.54) can
be solved for x,

Le
Ue (S’Py +|§‘:lf)l"

KX/ = —2— ! U‘J A (5. 58)
s
The function % is given by Eq. (5.28). It consists of functions of T and
¢ which can be computed once b1 and c] are specified. Therefore, if b1 is

assumed, then ci follows from Eq. (5.57) and their x dependency is deter-
mined from Eq. (5. 58).

5.6 Boundary Layer Self-Induced Pressure

From the previous sections, it is known that the dissociation
rate depends strongly on pressure. Thus the induced pressure gradient due
to the boundary layer displacement thickness may alter the dissociation rate
considerably from that of a uniform pressure distribution.

The displacement thickness for a weakly dissociating boundary
layer is given by Eq. (5.35) and rewritten here as

. [ ['Xf»ﬁd"‘]zlg (5.59)
JQEXD %
where
I:f.(%(l+c4)‘¥rz)a(§ (5.593)
and
e i P (5. 40)

The external flow is assumed to have a fixed degree of
dissociation. For flow past a slender body, strong dissociation may occur
in the inviscid flow only at a short distance from the leading edge where
the shock wave is strong. This effect has been examined by Inger (Ref. 36).
He shows that the failure to properly match the viscous flow reaction rate
at the outer edge of the boundary layer to the inviscid flow rate will usually
cause only a small error in solving the boundary layer equations. Thus
except in the strong interaction region, the assumption that the dissociation
level at the edge of the boundary layer does not change provides a good
approximation,

For frozen flows, or flows without dissociation, the tangent-

wedge relation again can be used to compute pressure distribution. As be-
fore, the tangent-wedge formula gives, Eq. (4. 3)
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Boirare [JBT L - (4.3)

where Y is the frozen specific heat of the external flow. This expression
can be reversed to have 8¢ in terms of pe/pep. If this is done, it can be
integrated to yield $* (see also Appendix B)

|
$* = ‘ !’(21'+l) wa [ﬁ (5.60)
6’+\

With the displacement thickness (5. 59) we can formulate an
expression suitable for computing the pressure distribution

* R
AT " {'Xfa _ﬁ{:d(x]z <
=] Rews «»jx T (5. 61)

dx

2 b
-}’q: Y+1
This expression is suitable for an iteration scheme. Once
the pressure distribution is obtained, we can then compute all required
boundary layer characteristics such as skin friction and heat transfer.

5.7 Example and Discussion

From the previous outline, we know that for a nonequilibrium
chemically reacting boundary layer similar solutions do not exist in general.
The chemical reaction term depends strongly on the magnitude of the local
pressure and the velocity of the external flow, Thus for each case which
is computed, the pressure and the velocity of the external stream must be
specified.

A special example was computed in order to show the magni-
tude of the effects for a nonequilibrium dissociating boundary layer. The
case chosen was a flat plate with fully catalytic wall with the following con-
ditions, (equivalent to the standard atmosphere at 100, 000 ft. of altitude)

bo = 24.3 psf,

T = 392.4°K

Upw = 25, 000 P/sec

%13, Pr=0.7, le =14

Both the Prandtl number and the Lewis number were assumed constant.

A complete solution of the partial differential equations and the "similar"
solutions of the corresponding ordinary differential equations was obtained
in Refs. 32 and 33 for a flat plate with zero pressure gradient for the same
conditions. Thus a direct comparison of the present results with these
more exact solutions was possible,
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The solution obtained by the present approximation for a flat
plate with and without self-induced pressure gradient are shown in Figs. 19a
and b. Typical temperature and atom mass fraction profiles at distances
of 0 ft, 1 ft and 10 ft from the leading edge of the flat plate are shown in
Figs. 19c and d. At the leading edge, the boundary layer is chemically
frozen. Since the external flow is assumed to be undissociated, no atoms
are produced in or diffused into this region, therefore, the atom mass
fraction is zero. When dissociation develops downstream, the atom mass
fraction increases, and as energy is absorbed in the process, the tempera-
ture consequently decreases. It can be seen that the dissociation takes
place mainly in the high temperature region where the viscous dissipation
is large. Atoms then diffuse into the outer portion and the portion of the
boundary layer near the wall and combine there. Figure 19a shows the
temperature gradient at the wall up to 10 ft from the leading edge and Fig.
19b shows the gradient of atom mass fraction at the wall for the same dis-
tance. The ''similar" solutions by Blottner are also shown in the figures.
The solutions obtained by the present approximation are about 4 percent too
high for the temperature gradient and 20 percent too high for the atom mass
fraction gradient. This large error in the atom concentration gradient is
believed to be caused by the polynomial approximation of the atom mass
fraction profile. It is well known that a polynomial type of approximation can
give reasonable results if the represented variable possesses a simple geo-
metric profile which varies monotonically from zero to its maximum value,
such as the velocity profile with a favourable pressure gradient or the total
enthalpy profile. In this case, the polynomial approximation gives a rea-
sonably accurate results for the partial enthalpy profile which possesses a
simple form. However, poor results are obtained for the atom mass
fraction profile which has a more complicated form. Thus one improve-
ment of the present approach would be to employ the total energy equation
and the partial energy equation instead of the atom concentration equation
so that these two simple geometric profiles can be represented more
accurately by polynomials. The atom mass fraction could be obtained
from the difference of these two profiles.

The pressure gradient due to the self-induced pressure tends
to increase the dissociation as shown in Fig. 19b. This can be seen through
the atom mass production term Eq. (5.27). As the pressure increases, the
collision rate of the species also increases. The net result is to decrease
the characteristic time for the chemical reaction given in Eq. (5.28), and
consequently, the equilibrium condition will be reached more quickly than
at a lower pressure. An increase in the dissociation rate also causes a
corresponding absorbtion of flow energy in the form of dissociation energy
and a consequent decrease of temperature as shown in Fig. 19a.

It is important to note that the integral method can still yield
good results for integrated properties although the detailed profile may not
be satisfactory. This is demonstrated by Karman's original approach (see
for example Ref. 6). Figure 20 shows the displacement thickness of the
boundary layer with and without self-induced pressure gradient. Blottner's
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exact solution is also shown up to 5 ft. The agreement of the present results
with the exact solution is reasonably good. Since the displacement thickness
determines the local pressure field, the close agreement of approximate and
exact solutions is encouraging. The displacement thickness with self-induced
pressure gradient is also shown in Fig. 20. It gives a slightly lower value
than that with zero pressure gradient up to about 3 ft and then becomes higher
downstream. The displacement thickness of a perfect gas without pressure
gradient is also shown in the figure. It is thicker than the corresponding
dissociating boundary layer. This is because the dissociating boundary layer
has a higher average density, (i.e., a lower average temperature) due to the
absorption of energy by dissociation and is consequently thinner than in the
perfect gas case.

The induced pressure distribution for the dissociating case
appears in Fig., 21. The pressure distribution obtained for a perfect gas is
also shown. In general, the induced pressure is lower in the dissociating
case than in the perfect gas case owing to the thinner displacement thickness
in the dissociating case, as discussed above.

Figure 22 shows the heat transfer coefficient along the plate.
The value for the perfect gas case is also shown. It is interesting to see that
although the heat transfer is in general only slightly greater than for the per-
fect gas case, the difference is insignificant. This can be seen from the
expression for the heat transfer coefficient in Eq. (5. 34). If we recall the
expression of total enthalpy Eq. (5. 14), the gradient on the surface is

("%‘)b 2(3—%@b + b (%_Ef‘)t

%

and the heat transfer rate, Eq. (5. 33a),

_g, = Mfeua T 387) . le 4o 3C4
1 %[FVHT‘(QQ)+W{“ 51 Jb

Thus if Le = 1, then the heat flux is directly proportional to the total
enthalpy flux as for a perfect gas. Thus the slight difference in these two
cases comes from the effect of Lewis number or the diffusion effect. Since
the Lewis number is only slightly different from unity, the heat transfer in
both cases will be very similar, For a fully catalytic surface the atoms
striking the cold surface recombine there immediately. The heat transfer

is approximately the same as the energy transfer and is determined pri-
marily by the difference in enthalpy between the hot gas and the cold sur-
face. Whether the atoms recombine in the boundary layer or on the wall, the
mechanism of heat transfer does not play a significant role in such a process.
The energy is transported at approximately the same rate whether it is
carried in the active modes as translational and rotational energy by a
molecule, or in the inert modes as energy of dissociation by an atom (Ref.
3).
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6. CONCLUDING REMARKS

An approximate method of solution of the compressible
laminar boundary layer equations has been developed. The method is bas-
ed on the concept of a combination of integral relations and similarity
solutions, which was originally introduced by Thwaites for the case of in-
compressible flow. In the classical approach, the momentum integral
equation is used while the energy equation is usually ignored. Therefore,
under certain conditions this procedure yields the temperature field with
low accuracy and predicts the velocity field more accurately. In order to
improve the prediction of heat transfer, the energy integral equation must
also be considered in the formulation of the integral relations. The basic
difference between the present approach and the classical momentum in -
tegral methods is that the energy integral equation is also fully used in the
derivation of the fundamental integral relation. Therefore the variation of
the ratio of the energy defect thickness to the momentum defect thickness,
which has a strong effect on the computation of heat transfer, is taken into
account. This approach improves the accuracy of the prediction of heat
transfer.

Using a linear approximation for the correlation parameters,
the basic equation can be integrated analytically. Its solution, results in
a determination of the velocity gradient parameter (m) for a given external
velocity distribution and specified surface temperature. This is the first
step in solving for the boundary layer characteristics, which then follow
immediately from the correlation parameters. The resulting equation is
then reduced to a form which is suitable for the computation of boundary
layer properties in hypersonic flows.

The application of this formulation is illustrated by solution
of the hypersonic self-induced pressure interaction problem. The external
local pressure field and the local flow inclination is related by the tangent-
wedge relation for two-dimensional flows and the tangent-cone relation for
axisymmetric flows. The present method makes it possible to construct
solutions valid throughout the compiete interaction range. Solutions are
compared with available experimental results and more exact solutions by
other authors and the agreement is good. This shows that the use of the
energy integral equation in the formulation of the boundary-layer integral
relation is important, especially in the calculation of heat transfer.

The present method does not give explicit analytical solutions
to the pressure interaction problem because of the complexity of the result-
ing integro-differential equation. However, this equation can be solved by
using a successive approximation scheme that involves only simple numeri-
cal integrations,

With the present integral method and the local-similarity con-
cept, closed form solutions to the pressure interaction problem can also be
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obtained but with relatively low accuracy. However, the present method
using the integro-differential equation does provide a simple approach that
gives a higher accuracy solution than the local-similarity method and with
much less effort than is required for the exact numerical solutions. This
may have worthwhile practical applications.

Real gas effects arising from nonequilibrium dissociation in
the boundary layer due to the high viscous dissipation at hypersonic speed
are also examined for the pressure interaction problem. A weakly dissociat-
ing diatomic gas, such as oxygen, is used as a model. It is found that for
a body with a fully-catalytic surface, the occurrence of dissociation tends
to reduce the interaction effect slightly due to a decreased boundary layer
displacement thickness. The increase in heat transfer due to the recom-
bination of atoms at the wall is small in comparison with the perfect gas
case. The simplified example used to illustrate this type of flow provides
useful insight and it is possible to extend the method to actual cases by
using correct thermodynamic conditions and dispensing with the local-
similarity concept.
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TABLE 1

Summary of Correlation Parameters
for g, =2, Pr=1

b m L m L ‘qub C%h
2.00 . 4451 . 4406 . 0045 . 0033 2.4878 7.5240
1.50 .3192 . 4255 . 0093 . 0127 2.1402 6.6621
1. 00 . 2053 . 4091 .0156 . 0304 1.7318 5. 6444

.20 . 1009 . 4026 .0188 . 0748 1. 2351 4.3174
.30 .0614 . 4086 .0167 . 1108 . 9829 3.6023

0 0 .4410 0 . 2205 . 4696 2.0000
-. 10 -.0228 . 4567 | -.014%7 . 2940 . 1805 .8951
-.1295 | -.0283 .4368 |-.0209 . 3220 0 0

Note: These results were calculated from the similarity solutions listed
in Ref. 10.
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TABLE II1

Summary of Linear Approximate Values for Correlation

Parameters
b A B X
0.15 0.3988 0.12 1.983
0.40 0. 4205 0.60 1.914
0.60 0.3663 1.49 1,787
Adiabatic 0.2532 3.39 1.516
Wall




TABLE IV

Summary of Coefficients for Asymptotic Solutions of Pressure

Distribution
Weak Interaction
gb aj by d d*
0.0 | -==-=- | =—===-- 0. 125%% 0. 145
0.15 0.115 0.005710.205 | ~----
0.40 0.192 0.015710.342 | ~----
0.60 0. 250 0.0267 | 0.446 | ~----
Adiaba-}| 0. 314 0.0422 | 0. 560 0.556
tic Wall

*d is defined as o = —2—
*% Extrapolated from other values, Pr = 0. 7.

+ Results from Ref. 5 for Pr = 0. 725.

Strong Interaction

9b a, b; Oz** b;“
0.0 0.100%* 0.501% [ 0.149 | ------
0.15 1 0.177 0.503 | -==== | ------
0.40 ] 0.302 0.515 || ===~- | —-----
0.60 | 0.390 0.537 | --=~-- | ------

Adiabatic | 0. 483 0.581 0.515 0.759
Wall

* Extrapolated from other values, Pr = 0.7,

% Results from Ref. 5 for Pr = 1.0.




TABLE V

Relations of K2, n, pe/pw for a Flat Plate from Local Similar Solutions

K2 K n Pe/Poo
0.1 0.316 0. 171 1.54
0.2 0. 448 -0.220 1.82
0.3 0.548 -0. 252 2.06
0.4 0.633 -0. 276 2.29
0.5 0.708 -0.295 2.50
0.6 0.775 -0.310 2.70
0.7 0.837 -0.322 2. 90
0.8 0. 895 -0.333 3.10
0.9 0. 950 -0.342 3.28
1.0 1. 000 -0.351 3.48
1.2 1.096 -0.365 3.84
1.4 1.183 -0.376 4.21
1.6 1. 266 -0.386 4.57
2.0 1.415 -0. 402 5.28
2.5 1. 580 -0.414 6.15
3.0 1.733 -0.424 7.02
3.5 1.872 ~0. 433 7.88
4.0 2. 000 -0.438 8.73




CORRELATION
FROM SOLUTIO
OF INTEGRAL
EQUATIONS

FIG. 1

\Q

_

A

\ CORRELATION BASED ON
SIMILAR SOLUTIONS

SKETCH OF CORRELATION Q(X\, X))



.47

.46 -

.45

.44

.43

.41

-0.1

FIG, 2

o
(=)

.1

CORRELATION OF PARAMETERS L AND m, gb=2 , Pr=1,




'l

T T T T T 1 T T
0.3
0.2 \
0.1 | L 1 1 ] 1 ]
-. 05 0 .05
m

FIG. 3 CORRELATION OF PARAMETERS L AND T, gb=2, Pr=1,



Cr

(a)
0.4 /
0.3 /////
/
m IT/
0.2 /
0.1 //
0.0
-.04 -.02 .02
, m
2.5
(b)
2.0
1.5 /
m r—'n/
1.0 /
0.5 /
o |
- 04 -.02 .02
m, m
FIG, 4a,b CORRELATION OF SKIN FRICTION AND HEAT TRANSFER

PARAMETERS WITH RESPECT TO m AND m, gy,=2, Pr=1.




FIG.5

0, 1 1 ] T [ 1 1 ] 1

—— MOMENTUM & ENERGY INTEGRAL METHOD
——— MOMENTUM INTEGRAL METHOD

—-— POOTS' EXACT SOLUTION g,=2, Pr=1, x,=0.464

0 | 1 J I | ] I I

0 0.5
X/xg

COMPARISON OF SKIN FRICTION AND HEAT TRANSFER PREDICTED
BY PRESENT APPROACH AND MOMENTUM INTEGRAL ME THOD

EXACT SOLUTIONS

1.0



T 1 { I

\ .0, 4
.4

- gb=0_ 15 \-

W. 6

— ADIABATIC

15 [ 1 ]
0 .02 .04 .06

m

FI1G. 6 CORRELATION OF PARAMETERS L AND m Pr=0.7




10

ADIABATIC

\\ gb:O_ 6
2 \
\ gb:0'4
gp=0.15
0 .02 .04 .06 .08
m

2
FIG. 7 CORRELATION OF PARAMETERS (1 + HF)” AND m

1+Q2



T T T ] T | !
0.30 // g,=0.15
gb=0 4
r -
0.25
2 B —
1+ Q% o
Q
0. 20\
b— gb=0.6 -J
0. 15 | 1 ! L | | y
0 0.05 0.10
m
N
FIG. 8 CORRELATION OF PARAMETERS ———Q—- * AND m




gb=0.6

4.0

2.0

0 0.05 0.10

FIG. 9 CORRELATION OF REYNOLDS ANALOGY PARAMETER AND m



O45—T—T T T T T T T T °
-4
—s3
B
—2
1
0
1.0
2.0 | 1 | T T T T T
1.9 F _
1.8 F i
R
1.7L B
1.6 | _
1.5 l | i l | | | | |
0 0.5 1.0
Eb

FI1G. 10 VARIATION OF A, B AND o FOR USE IN LINEAR METHOD OF
DETERMINING PARAMETER m




10 T T | — T | — T 50
2 ]
= 1+H
(‘*——g)—'—'C- D m |
1+Q C /
™ =140
/
7
/ i
8 30
/
c 5l // D
/
B D // Cm - 20
L 7/
/
//
B S 110
//
- —~
’//
0 | { | 1 1 1 { | | 0
0 0.5 1.0
b

FIG. 11 VARIATION OF C, D AND C,, FOR USE IN LINEAR METHOD



FIG. 12

0.

0.

5

41 —

VARIATION OF E, F, G, H FOR USE IN LINEAR METHOD IN
DETERMINING SKIN FRICTION AND HEAT TRANSFER




JLV1d LVTd ¥V H4dAO

a'TAald MOTA AADNANI YFAVT XYVANNOL J0 HOLANS €1 "DIA
NOI1D3AY NOIDIY
NOILLDOVYHLNI NOIDAY NQILOVHJALNI
SIvaM JLVIAAWNHILNI DNOY.LS
el L L L LI

HHAVT AYVAN NO4g

\

HHAAVT AIDSIANI

JAVM 3D0HS

<< 2|



ALVId LVTd AALVTIASNI NV NO WVHLYId ANV TIVANIA Ad
ANIV.LIO SLINSAY TVILNANIHIIXT HLIM NOILDVHHLNI HYNSSHdd
AAONANI-ATAS A0 SNOILDIAAYd TVOILLEYOHHL 40 NOSIHVdINOD 1 °DId

0S>194>92 ‘96 =*IN
(g2 "ddY) JAD0LSIDVIA ® NVHILYAd
B LY >WU>FL ‘8°6=%IN B
(1z "dAdy¥)1IvaNdd
o v1vd n

¢l

- NOILNTOS ALIMVITNIS TVvD01 —-— 47V1
(61 "d3Y) HANLIOTIA ® Z10O1 dDDHNTA ———
— LINSAY LNASIUd

91




ALVId LVT4 AT1OD

v NO NVI'TOD ANV "TTVH A€ ANIVLEO SLTNSHY TVILNHNIYEdXH
HLIM AYNSSAYd A0 SNOLLOIAAYd TVOLLIHOEHL 40 NOSIMVdANOD ST "DId

X

001 08 09 0% 02 ol 8 9 ¥ 4 I

T T 1 T 1 T T L O L T T 5 0 !
=0
— 0 S ° —¢
—T o —
'NOLLOVHAILNI .k\
- LOVHELLNI ONOH.LS .\\ / NOLLOVMAINI VM P
| . \ —
o
_ A 9
o7 ©d

- 0 =L
610 "L

- 26 >PU>9  9I>®IN>6 oz

(¥2 "d3Y) viva

— NOILLNTOS ALIMVIINIS T¥yD0T —— -

(61 "AdY) HANLLOTE ® ZLOT-IADODATI ———

B LINSdY LNIASdHd

| I O O O T O { I I O R | 0%




50

401

20

PRESENT RESULT
——— FLUGGE-LOTZ & BLOTTNER (REF. 19) —

FIG. 16

60

THEORETICAL PREDICTIONS OF SKIN FRICTION ON A COLD FLAT PLATE




50 T T T T T T1TT1 ] 1 1

40 - —— PRESENT RESULT —
——— FLUGGE-LOTZ & BLOTTNER (REF, 19)
e LOCAL SIMILARITY SOLUTION

30 —--— ZERO PRESSURE GRADIENT SOLUTION 7]

—x— WHALEN'S RESULT %: 0.2
(o]

20 |- DATA (REF. 24) m
10.5 <Mq< 12. 6
2.1 < Ret<82. 3

Th_
72 0.15

10+

3
M 3Cy

FIG. 17 COMPARISON OF THEORETiCAL PREDICTIONS OF HEAT TRANSFER
WITH EXPERIMENTAL RESULTS OBTAINED BY HALL AND GOLIAN
ON A COLD FLAT PLATE



70

' 1 T 1711 | [ | RN
60 . WITHOUT TRANSVERSE CURVATURE EFFECT |
| —— WITH TRANSVERSE CURVATURE EFFECT _
40} DATA 0c = 5° ~
11<Mg, <13 /
T
b
— b , —
Fo~0.15
2'0 p— o
MC3Ch
Lof .
8k B
6 F _
4 _
3 Ll 11l | | (0 3 11
n 6 8 1.0 2.0 4.0 6.0 8.0 10.0

FIG. 18 COMPARISON OF THEORETICAL PREDICTIONS OF HEAT TRANSFER ON
A COLD SLENDER CONE WITH EXPERIMENTAL RESULTS OBTAINED BY
WITTLIFF AND WILSON (REF. 28)




(T
bq( ‘I;)b
30 F -
——— BLOTTNER'S SIMILAR SOLUTION
—e— ZERO PRESSURE GRADIENT
—— WITH SELF-INDUCED PRESSURE
25 1 1 | | 1 1 i L 1
0 5 10
x (ft)
.08 T T T T ] T ] T T
(b)
.06 - -
/
(é& ~
anh-04 ~ n
M e
/
//
——— BLOTTNER'S SIMILAR SOLUTION
ZERO PRESSURE GRADIENT
WITH SELF-INDUCED PRESSURE
0 1 | 1 1 i 1 ] ] 1
0 5

10
x (ft)

FIG. 19a,b TEMPERATURE GRADIENT AND ATOM MASS FRACTION AT THE WALL
WITH FULL CATALICITY AT ZERO PRESSURE GRADIENT



X=0FT -

X=1FT

30

.07

FIG. 19¢,d TEMPERATURE AND ATOM MASS FRACTION PROFILES AT ZERO
PRESSURE GRADIENT




.12

.02}

——— PERFECT GAS -
ZERO PRESSURE GRADIENT

x WITH SELF-INDUCED PRESSURE
o BLOTTNER!'S SOLUTION

l i 1 I ] i ] | ]

FIG. 20

5 ' 10

DISPLACEMENT THICKNESS FOR FLOW ALONG A CATALYTIC
FLAT PLATE



3.0 T T T | 1 T T j T

DISSOCIATING GAS
——— PERFECT GAS

Pe

1.0 1 l 1 1 1 | 1 | |

FIG. 21 VARIATION OF PRESSURE DUE TO DISPLACEMENT EFFECT ALONG
A CATALYTIC FLAT PLATE



DISSOCIATING GAS 7
— —— PERFECT GAS

x (ft)

FIG. 22 HEAT TRANSFER ALONG A CATALYTIC FLAT PLATE



APPENDIX A

Momentum Integral Method

In the discussion of Section 2. 4, it has been pointed out that
if the one-parameter correlation is used, only one equation is required to
obtain the ¢ dependency of A and x . Here we rewrite the momentum in-
tegral and the energy integral equations, Eqs. (2. 15 and 2. 18) as

e 2.15

Fone @+2%°‘2+2‘22—&2“§ (e+8) (2:19)
e _ % dA

e (2.1

Multiply Eq. (2.15) by & and Eq. (2.18) by A and rearrange, results

Ed_‘g-( {o @%ws ‘% ‘,,%%[‘%9’(!-* He) (2.20)
j\_( - A9
dg Py (1-9) (2.21)

In the method of momentum integral (Ref. 3), the energy
integral equation is ignored and the momentum integral equation alone is
used. If the following relations are defined:

'rﬁ:j—i%;%-“{ez (A.1)
} = 6k, (A. 2)

A Sup (A. 3)
Pr{1—9)

Y =

_ e (A.4)
He =)

Then the momentum integral equation (2. 20) can be written with the defina-
tions of (A.1), (A.2) and (A.4) as

_,d,_—‘ﬁe Ue \ _ T A.H
d-i(mp—e—ujg)‘). ( )

where

[=1-27(i+ ) (A. 6)

Al



Equation (A.5) can be integrated if L is assumed as a function of m only,
for a given surface temperature. This is the basic assumption of the one-
parameter integral method and in Thwaites' or Cohen and Reshotko's
approach (Refs. 1 and 3), the functional relation L(m) is provided by the
exact similarity solutions. If a peicewise linear approximation for the
function I:(E) is used, such that

- -

L=A-8m (A.T)

Then Eq. (A.5) becomes a simple first order ordinary differential equation
and can be integrated to yield m
Ue F [*]]
- £ Me - -7/ - = O(M
e Bt (op- [ B duey [ [T (ap [Brete )t ] (.8)
4, {. Ure

where B’ = .‘;ﬁ 8
e

and the constant C is determined at ¢ = ¢, . as
C=0.¢ (A. 9)
If the integration starts from the leading edge, then C = 0.
Once the dependency of m on x (or ¢ ) is known, the boundary
layer characteristics follow directly from the correlations which are based

on the similarity solutions.

Equation (A. 8) can be transformed back to the physical
coordinates as

Fa- el LR R E Al T, g B E

Y}
. - s (A. 10)
TR PR dx ]
Ya
where
- _ =
od = D = B
(3 - ,+_'[§_ (A.11)

P:’PQ/S

The skin friction coefficient is given as

_ | 2FfuexM A.12)
q'b,l Rexs -J . : ‘Pr)m, (

b
J\ Q.,/ua Ua 0(9(

and the modified Reynolds' analogy gives
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Ch . 2T

Cho G (A. 13)
I =4
where
C‘ﬁ, = 2Cb/PbU¢2
o fuuex
Rexs = W (A. 14)

L (O
G Cous ( He = He)
are the skin friction coefficient, the local Reynolds number and the heat
transfer coefficient respectively with reference to the surface conditions.

In the one-parameter method, however, the energy integral
equation can also be used 1o solve the problem with a suitable correlation
based on the similarity solutions. The results obtained by the momentum
integral and the energy integral equations are not the same in general.
This has been shown in Refs. 4 and 5 that only if the thicknesses A and ®
are proportional to each other over the entire range of consideration, that
these two equations will yield a similar result.

The momentum integral equation (A. 3) is

FAda) = 1o G (4.9)

and the energy integral equation (2. 21) can be written with the definations
(A. 1) and (A. 3)

d e ue A -

H__E " _('-_E_‘ﬁ{§) = (A. 15)
or by expanding the left hand side,

d /= he we __@:*__—ﬁj__'{__@‘d A?

E(?(M_HE—UTQ)‘ AT uig‘,ﬁh‘(@‘x) (A.16)

If /T/g is constant throughout the entire range, then the second term at
the right hand side of Eq. (A. 16) becomes zero. For similarity solutions,
the boundary layer characteristics do not depend on § , Egs. (2.15) and
(2. 18) yield

v ?i = ®Tm - %‘%%@'(H He) (A.17a)
or
F%’z (- 2m (e He) (A. 17b)

Therefore, if A6 is constant, then Eq. (A.17b) shows immediately that
Eq. (A.7 ) and Eq. (A. 16) yield a similar result.

However, in general, these thicknesses A and © are not pro-
portional to each other over the entire range of consideration. The varia-
tion of the ratio will appear in the second term at the right hand side of (A. 16)
and will effect the computation of heat transfer. The discussion of taking into
account of this point within the base of the one-parameter method is given
in Section 2. 4.
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APPENDIX B

Solution of the Pressure Interaction Problem by Iteration

The system of equations developed in the Section 4. 1 for the
computation of the pressure interaction problem are rewritten here as

me- SRR AR () 4 6.

M s (4 HE)? [ be v (P b\ AT (4.8)
= - (r1)A (;+H52L( ;;) J_ (—%;) ",%‘3

and the tangent-wedge relation

d

rﬂ
In principle, a certain pressure distribution is assumed, which in turn
yields the pressure gradient parameter m as a function of & and thus the
value of (1 + Hp)zl(l + Qz). Then the displacement thickness a* is compu-
ted. A new pressure distribution is then calculated by the tangent-wedge
relation using the computed local displacement thickness. The procedure is
then repeated until convergence is reached.

It is noted that the value of the parameter (1 + HF)2/(1 + Qz)
varies only slightly through the whole pressure range of the problem,
especially for a very cold surface (see Fig. 7). Thus a mean value is
chosen for this parameter for a given total enthalpy ratio g and is held
constant through the ccmputation. If this is done, the pressure distribution
can then be calculated by ysing Eqs. (4.8) and (4. 9) only.

At the leading edge x—0, andX — co. It is difficult to
choose the starting point %, for the numerical integration and estimate
the initial pressure near the singularity. Numerical instability did arise
due to small errors in the initial estimation. Thus a further transformation
is desirable so that the singularity at infinity is transformed back to the
origin. Introduce the following transformation

Z’?y'jz (B.1)

p_—_% (B. 2)

then the Eqgs. (4. 9) and (4. 8) reduce to

dA* { (B. 3)
Y(YH) [_L

*’_(Y-l) (1+ He) - (B. 4)
o4 AHG;P[F d2
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The tangent-wedge relation can then be integrated to yield the displacement
thickness

2 _L_‘,
A*sz; D) f 2 (B.5)
*— —
2, ,J'lP"+ 7Y

Eliminating the displacement thickness from the above
equations, we obtain an expression suitable for iteration procedure

+ - 2
pay= [ Ao 1E ']*[(fﬁ"ﬁr'?;—.‘”‘*)r (®.6)

Y(r+ D=1 (1+He) A 3 Pz

The quantities in the first braacket and &« are now all con-
stant and depend only on the specified g,. For a given initial pressure
distribution, we can calculate a new P(2) by performing two integrations
inside the second bracket. In the present computation, the asymptotic
solutions of the strong interaction are used as initial values for the itera-
tion. The results show that only five iterations are needed to give accur-
acy up to five digits.
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APPENDIX C

Method of Local Similarity

The local similarity method is based on the condition that
the external flow and the body properties vary sufficiently slowly with the
x~dependent variable § . If this is the case, then derivatives with re-
spect to { of the boundary-layer dependent variables are small compared
with the corresponding » derivatives. So that the right hand sides of the
transformed boundary layer equations (2. 9) and (2. 10) can be neglected.
Those terms on the left hand sides which are functions of ¢ are assumed
to take on their local values and the boundary layer equations are consid-
ered as ordinary differential equations in 1 with §{ as a parameter.
Local similarity thus presents a ''patching together' of local solutions in
which the history of the flow is involved only in the ¥ dependence of the
definition of n in the transformation (Eq. 2.7a).

The limit of this approximation can be shown through the
integrated boundary layer equations (see also Ref, 14). If we write Eqgs.
(2. 15) and (2. 16) in a slightly different form, namely

=0 [+ 2558+ LAEFECHI] (2. 15)
_%q:_z /\[|+z_zd/\] (2. 16)

the derivatives of the boundary layer characteristics with respect to §
appear only in the second term of both equations.

Thus if both
T d6
_527{ «l

then these equations reduced to the following form with these two terms
neglected

_SL'I"“’ =6['+(3(1+HF)] (C. 1)
jﬁ%"—"\ (C.2)

where
He 2% du

P= The Us % (C. 3)

~

Ve |

Cl1



is a variable depending only on the external flow condition, In general

is a function of § . If B is assumed to take on its local value and be con-
stant locally, then the above equations give nothing more than the relations
of boundary layer characteristics for the similarity solutions at that local
point. The error introduced by neglecting the logarithmic derivative terms
can be estimated with thelp of the similarity solutions. We may write for

;.j_?_ 3(%3%)(%%%) (C. 4)

The first bracket at the right hand side contains the logarithmic derivative
of g with respect to { . This term is determined completely by the ex-
ternal conditions. The second bracket contains the logarithmic derivative
of the momentum thickness with respect to A8 and can be estimated with the
help of similarity sclutions. Thus if both terms are small, the error intro-
duced by neglecting the ¥ derivative term will be small and the local simi-
larity method may provide a good approximation. Similarly we can esti-
mate the order of magnitude of the logarithmic derivative of A with respect
to ¥ in the energy integral equation. Therefore, we can see that for cases
where the logarithmic derivative of 8 and A is much less than unity, the
method of local similarity can be used.

The local similarity concept has been applied to a number of
problems with success. The application of this method to the boundary
layer problem with a self-induced pressure field was given in Ref. 14.
With the integral method formulated herein and the use of the local similarity
concept, solutions in closed form can be obtained for the pressure inter-
action problem.

Two-Dimensional Flow

The boundary layer displacement thickness was defined by
b
L _ Pu (3. 4)
¢ J\b (I (;,ue )dy
Through the transformation (2. 7a)
S X3 Y AR Y (3. 4a)
(,‘ Ue 3 € 'I

in terms of external flow conditions

o . A2¢ [Xf‘%d%]% Tes (3. 4b)
- JRes %

where

[x) = S %3-‘%)0!’?

]
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The derivative of the displacement thickness with respect to x is thus

%

-l dm‘z‘
- W 1 2524 o

where j-%dx
> = —“—'%m

Here again, we assume that an effective body is formed by
the original body and the additional thickness due to the growth of the
boundary layer. The flow inclination at the outer edge of the boundary

layer thus consists of the geometric slope and the slope of the displace-
ment thickness of the boundary layer. '

The quantity A (x) depends only on the external pressure
distribution. For flows over a slender body, the quantity X (x) is a
slowly varying function of x. Thus the logarithmic derivative of it is
small in magnitude compared with terms of order unity. The order of
magnitude of the logarithmic derivative of I can be estimated with the help
of the similarity solutions. If we write

L (1)

where B is the pressure gradient parameter defined by Eq. (C.3). We

know from the similar solutions that I is a slowly varying function of g ,
and if B8 changes only slowly along x, we can conclude that this logarithmic:
derivative of I is small in comparison with order of unity.

Thus if we neglect all terms with order of magnitude much
smaller than unity from Eq. {C.5), we have

" af [T g 15
g T e lam) e

If we further assume that po x™ locally, and I takes the
value from the similarity solution corresponding to the local value of n,
then the right hand side of Eq. (C. 7) is now an explicit function of n and
x. From the assumption px xI!, we can write (Ref. 14)

=X dbe _ d X d{‘) (C.8)
R (5%
where K is the hypersonic similarity parameter

*
K= Mo (81 +45) (C.9)
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The firstbracket on the right hand side of Eq. (C. 8) relates the pressure
field p, and the hypersonic similarity parameter K. This term is concern-
ed solely with the inviscid flow field and theories in inviscid flow should be
able to provide the required relation. The second bracket consists of the
relation between the change of K along x, i.e., the growth of the boundary
layer along x. Thus from Eq. (C. 9)

A dK’ _2x de 2 A28
K2dx T 8 dx * 6, dx?

From Eq. (C.7) we can show that

)5* *
R N 3

and from Eq. (C.9)

2{;’2 K;AKes (C. 10)
where,
Ko, = Max 64
Therefore
o dkr K- Key C.11
K; d’x - ("“"') K ( . )

where, the term dln 9}/0( £n o is neglected for a slender body.
Hence

n (?: dK’)[ Ch+l)(l-—)J

Solving for n yields

(58

n= ; (C.12)
(g

The relation of pressure to the local flow inclination is pro-
vided by the tangent-wedge relation as

T -4
Echz N T[S H+ B2 () %) %) (C.13)
i e S ) - ]
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By using K as a parameter, n can be computed from the Eq.
(C.12). The pressure can then be calculated from the tangent-wedge rela-
tion, which gives the relation of pg/py, and K.

‘%’ l+-§-f<’ff(-‘:§i)‘+%’;+fi—'] (C. 14)

The relation between the parameter K and the distance x is
provided by the boundary layer thickness relation. If the expression for
the boundary layer displacement thickness §* obtained by the integral
method is used, Eq. (3.6)

x
s S ety Lo e
Rexa 2 ]*‘Q" ‘ch . o (3-6)
Equation (C. 10), with the assumption px x", yields in closed form
NN o B I T ol S Bt 4/_&-
K=*eo= 2|2 [iees fre-nw 138 e x (C.13)
TMS

where % = is the interaction parameter.

;

Re Yeo

Thus a functional relation of p,/py, and % is finally formed
through (C. 14) and (C. 15). The skin friction coefficient follows immediately

as
— L. %
2G = [2 (newmn+ 1) [ fr@] (C. 16)
where i+ ol is now a function of the pressure gradient parameter m,
where

- - = n
" 37 A TR (C. 17)

The heat transfer coefficient can then be calculated through
the modified Reynolds analogy once m and the skin friction coefficient are
known, or directly as

M o= 5[ 3 (nwmne 0 R LT (. 18)

Hence by using K as a parameter, n and p,/pg can be com-
puted from Egs. (C.12), (C. 13) and (C. 14) respectively. For a flat plate
Gb = 0, and here the quantities can be computed once and for all. The num-
erical value of these functional relations for a flat plate are listed in Table
V. For a body with specified surface temperature, the relation between the
parameter K and the interaction parameter 7%, is given by Eq. (C. 15). Skin
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friction and heat transfer can then be computed from Eqs. (C. 16) and (C. 18)
respectively.

Since this method refers only to local conditions, the formula-
tion can also be applied to cases with surface temperature varying along the
body. In such cases, the boundary layer parameters A, « , (1 +Hp)/(1 +Q2),
etc. are chosen to correspond to the local gp along the surface.

The solutions obtained by the foregoing formulation are com-
pared with solutions obtained by using the integral method through several

examples. The details of a discussion is given in Sec. 4. 3.

Axisymmetric Flow

The local similarity method can be readily applied for axisym -
metric flow in a similar way as for two-dimensional case. Due to lack of
information on similarity solutions with transverse curvature effect, only
the case with negligible transverse curvature effect is considered here. In
this case, all necessary information can be obtained through the Mangler
transformation from the two-dimensional formulation.

The boundary-layer displacement-thickness integral has
been shown to be in the following form for slender bodies with a constant
surface temperature distribution

s TXME () (1+He) —o (F by \ ¥ (4.29)
o= Rexe 2 A +Q Ts'(%) \ (%) " dw

where, the subscript ¢ refers to conditions on the body surface when the
boundary layer is absent and rp is the radius of the body measured from the
axis of symmetry. For conical body,

$*2 2 C'XM: (Y~f)2A (H—Hp)l (%)-N/q((‘?;)wjx’o('x (C.19)

4
Rex. 2 [+Q> %x? '{-"c

The induced pressure due to the local flow inclination is
approximated by the tangent-cone relation. If

#
KC:Mme<=Mw(96+%§‘) (C.ZO)
then for Ke » 1, we use Lees' results (Ref. 26) for slender cones when the

conical shock wave is not too far away from the cone surface. The relation
is in the form
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2y o AY ki) - ~Ke )* _JEL__]
%—1.—?‘_(((3 1) + ¥k —Ke) [(?{I)*-

K}.

(C.21)

K = 1 ke + A/(r+'¢ie)z+ 2_

{+3 [+3 Y+3

where Kg = M85, Og is the half angle of the conical shock and Kg =M,0¢,

The relation of Kg and K¢ can be approximated by the form
(Ref. 26)
K( _ r+1 |

E__ 2 +'K':3 (C. 22)

Following the approach of the two-dimensional case, we can assume again
that px x0 . By taking n to be a constant locally, we can derive the varia-
tion of n as

ke dpe c

e B dkz(,- K (C.23)
I+ Ke® dpe (/ - .K_C) .
pe dKe Ke
The term % dil% is given by the tangent-cone relation
Y(r+1)
Kez O‘Pe _ g ’Q C 24
pe dkZ ~ 20 [ ¥+ el (C.24)
SO [ 5 ((* ke)'- }

Thus by using Ke as a parameter, we can calculate the value
of n along the body from Egs. (C.23) and (C. 24). The pressure distribution
is calculated by the tangent-cone relation Eq. (C. 21). The relation between
Ke and the interaction parameter §,. can be derived from the boundary-
layer displacement-thickness integral (C.19) as

Ko — K_Y-f'l*”f_ t=n ,_’Ef_— (C. 25)
< Jl+@’[h(ot—l)+5:]2

Here p is the pressure on the cone surface when the viscosity effect is
absent. The pratio of p./pg can be obtained from standard conical flow
solutions (Ref. 27).

Similarly, the pressure gradient parameter m is given as

m=-J=" 5 n (C. 26)
27 M-1)+3

and the skin-friction coefficient as

Cc7



MSCf=J_—i—-%cén‘°‘")*3)%(%~“+@21 (C.27)

The heat-transfer coefficient can then be calculated through
the modified Reynolds analogy once m and the skin friction coefficient is
known, or directly as

+Q* _

MSE Ch = é—j—%//—lf;c(n(o(-—l)+3>% )%‘:J g " (C. 28)
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